STMicroelectronics ST3DV520EQTR
STMicroelectronics ST3DV520EQTR
ST3DV520E  Pinout Diagram_1
ST3DV520E  Pinout Diagram_2
ST3DV520E  Pinout Diagram_3
feed

STMicroelectronics ST3DV520EQTR

Interface -40°C~85°C TA 0.5mm Analog Switch 56 Pin

Manufacturer No:

ST3DV520EQTR

Manufacturer:

STMicroelectronics

Utmel No:

2381-ST3DV520EQTR

Package:

56-WFQFN Exposed Pad

Datasheet:

ST3DV520E

ECAD Model:

Description:

56 Termination 0.5mm Analog Switch ST3DV 56 Pin 3.3V 56-WFQFN Exposed Pad

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 48970

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
ST3DV520EQTR information

Specifications
Documents & Media
Product Details
STMicroelectronics ST3DV520EQTR technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics ST3DV520EQTR.
  • Type
    Parameter
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    56-WFQFN Exposed Pad
  • Number of Pins
    56
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    56
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    6.5Ohm
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    Audio, Video
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8542.39.00.01
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    QUAD
  • Number of Functions
    4
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    3.3V
  • Terminal Pitch

    The center distance from one pole to the next.

    0.5mm
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    ST3DV
  • Number of Channels
    6
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    3.6V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    3V
  • Analog IC - Other Type

    Analog IC - Other Type is a parameter used to categorize electronic components that are integrated circuits (ICs) designed for analog signal processing but do not fall into more specific subcategories such as amplifiers, comparators, or voltage regulators. These ICs may include specialized analog functions such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), voltage references, or signal conditioning circuits. They are typically used in various applications where precise analog signal processing is required, such as in audio equipment, instrumentation, communication systems, and industrial control systems. Manufacturers provide detailed specifications for these components to help engineers select the most suitable IC for their specific design requirements.

    VIDEO MULTIPLEXER
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    500μA
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    500mW
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    250 ps
  • Logic Function

    In electronic components, the term "Logic Function" refers to the specific operation or behavior of a component based on its input signals. It describes how the component processes the input signals to produce the desired output. Logic functions are fundamental to digital circuits and are used to perform logical operations such as AND, OR, NOT, and XOR.Each electronic component, such as logic gates or flip-flops, is designed to perform a specific logic function based on its internal circuitry. By understanding the logic function of a component, engineers can design and analyze complex digital systems to ensure proper functionality and performance. Different logic functions can be combined to create more complex operations, allowing for the creation of sophisticated digital devices and systems.

    Demultiplexer, Multiplexer
  • Supply Type

    Supply Type in electronic components refers to the classification of power sources used to operate the component. It indicates whether the component requires DC or AC power, and if DC, specifies the voltage levels such as low, medium, or high. Different supply types can affect the performance, compatibility, and application of the component in electronic circuits. Understanding the supply type is crucial for proper component selection and integration into electronic designs.

    Single
  • -3db Bandwidth

    The "-3dB bandwidth" of an electronic component refers to the frequency range over which the component's output signal power is reduced by 3 decibels (dB) compared to its maximum output power. This parameter is commonly used to describe the frequency response of components such as amplifiers, filters, and other signal processing devices. The -3dB point is significant because it represents the half-power point, where the output signal power is reduced to half of its maximum value. Understanding the -3dB bandwidth is important for designing and analyzing electronic circuits to ensure that signals are accurately processed within the desired frequency range.

    600MHz
  • On-State Resistance (Max)

    The "On-State Resistance (Max)" parameter in electronic components refers to the maximum resistance exhibited by the component when it is in the fully conducting state. This resistance is typically measured when the component is carrying the maximum specified current. A lower on-state resistance indicates better conductivity and efficiency of the component when it is in the on-state. It is an important parameter to consider when selecting components for applications where low power dissipation and high efficiency are critical factors.

    6.5Ohm
  • Multiplexer/Demultiplexer Circuit

    A Multiplexer/Demultiplexer Circuit is an electronic component used in digital circuits to select one of several input signals and route it to a single output. A multiplexer, also known as a "mux," is used to combine multiple input signals into a single output, while a demultiplexer, also known as a "demux," is used to take a single input and route it to one of several possible outputs. These circuits are commonly used in data transmission, communication systems, and digital signal processing applications to efficiently manage and control the flow of data. Multiplexers and demultiplexers play a crucial role in optimizing the use of resources and improving the overall performance of electronic systems.

    2:1
  • Off-state Isolation-Nom

    Off-state Isolation-Nom is a parameter used to measure the level of isolation between two electronic components or circuits when one of them is in the off state. It indicates the ability of the component to prevent unwanted signals or interference from passing through when it is not actively conducting. The parameter is typically expressed in decibels (dB) and is an important consideration in designing and selecting components for applications where isolation between different parts of a circuit is critical to prevent crosstalk or interference. Higher values of Off-state Isolation-Nom indicate better isolation performance, leading to improved overall system reliability and performance.

    37 dB
  • On-state Resistance Match-Nom

    On-state Resistance Match-Nom refers to the nominal or standard value of the on-state resistance for a specific electronic component, such as a transistor or a MOSFET, when it is in its "on" state. This parameter indicates how much resistance the component presents to current flow during its conducting phase, which affects power dissipation and efficiency. Matching this value across multiple devices is crucial for ensuring consistent performance in applications where several components operate together.

    0.4Ohm
  • Switch Circuit

    establishes connections between links, on demand and as available, in order to establish an end-to-end circuit between devices.

    SPDT
  • Switch-on Time-Max

    Switch-on Time-Max is a parameter in electronic components that refers to the maximum time it takes for a device to turn on completely after receiving a signal or command. This parameter is crucial in determining the responsiveness and efficiency of the component in various applications. A shorter switch-on time-max indicates a faster response time, which is important in applications where quick activation is required. Manufacturers provide this specification to help users understand the performance characteristics of the component and ensure it meets the requirements of their specific application.

    15ns
  • Switch-off Time-Max

    Switch-off Time-Max is a parameter in electronic components that refers to the maximum time it takes for a device to turn off completely after a control signal is applied to switch it off. This parameter is crucial in determining the response time and efficiency of the component in various applications. A shorter switch-off time-max indicates a faster response and better performance of the component. It is important to consider this parameter when designing circuits or systems where precise timing and control are required.

    8.5ns
  • Voltage - Supply, Single (V+)

    Voltage - Supply, Single (V+) refers to the positive voltage supply needed for an electronic component to operate. It indicates the range of voltage levels that can be applied to the component from a single power source. This parameter is crucial for determining compatibility with other components in a circuit and ensuring proper functionality. It typically defines the minimum and maximum voltage limits within which the device can safely and effectively operate.

    3V~3.6V
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    DDC, LVDS
  • Length
    11mm
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.8mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for STMicroelectronics ST3DV520EQTR.

Product Description:

The ST3DV520EQTR is a high-performance, surface-mount, 56-pin WFQFN exposed pad video multiplexer from STMicroelectronics. This RoHS3 compliant IC is designed for audio and video applications, offering a range of features that make it an ideal choice for various industries.

Features:

  • High-frequency operation with a -3dB bandwidth of 600MHz
  • Support for DDC and LVDS interfaces
  • 2:1 multiplexer/demultiplexer circuit with 6 channels and 4 functions
  • Low power consumption with a nominal supply current of 500μA
  • High isolation and resistance matching for reliable switching
  • Operating temperature range of -40°C to 85°C

Applications:

  • Primary applications: Audio and video processing, signal switching, and routing
  • Secondary applications: Medical devices, industrial control systems, and automotive electronics

Alternative Parts:

  • ST3DV520EQTR is an obsolete part, and alternative parts may be available. Please contact STMicroelectronics for more information.

Embedded Modules:

  • This component is used in various embedded modules, including audio and video processing boards, signal switching modules, and routing modules.

FAQs:

Q: What is the operating temperature range of the ST3DV520EQTR? A: The operating temperature range is -40°C to 85°C.

Q: What is the maximum supply voltage of the ST3DV520EQTR? A: The maximum supply voltage is 3.6V.

Q: What is the power dissipation of the ST3DV520EQTR? A: The power dissipation is 500mW.

Q: Is the ST3DV520EQTR radiation hardened? A: No, the ST3DV520EQTR is not radiation hardened.

Q: What is the package type of the ST3DV520EQTR? A: The package type is 56-WFQFN exposed pad.

Q: Is the ST3DV520EQTR lead-free? A: Yes, the ST3DV520EQTR is lead-free.

Q: What is the terminal pitch of the ST3DV520EQTR? A: The terminal pitch is 0.5mm.

Q: What is the terminal position of the ST3DV520EQTR? A: The terminal position is QUAD.

Q: What is the switch-off time of the ST3DV520EQTR? A: The switch-off time is maximum 8.5ns.

Q: What is the switch-on time of the ST3DV520EQTR? A: The switch-on time is maximum 15ns.

Q: What is the height seated of the ST3DV520EQTR? A: The height seated is maximum 0.8mm.

Q: What is the supply type of the ST3DV520EQTR? A: The supply type is single.

Q: What is the supply voltage of the ST3DV520EQTR? A: The supply voltage is 3V to 3.6V.

Q: What is the resistance of the ST3DV520EQTR? A: The resistance is 6.5Ohm.

Q: What is the propagation delay of the ST3DV520EQTR? A: The propagation delay is 250ps.

Q: What is the off-state isolation of the ST3DV520EQTR? A: The off-state isolation is nominal 37 dB.

Q: What is the on-state resistance match of the ST3DV520EQTR? A: The on-state resistance match is nominal 0.4Ohm.

Q: What is the on-state resistance of the ST3DV520EQTR? A: The on-state resistance is maximum 6.5Ohm.