

TE Connectivity 1-1337474-0
Manufacturer No:
1-1337474-0
Tiny WHSLManufacturer:
Utmel No:
2460-1-1337474-0
Package:
-
Description:
Plug Threaded PTFE
Quantity:
Unit Price: $5.541314
Ext Price: $5.54
Delivery:





Payment:











In Stock : 879
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$5.541314
$5.54
10
$5.227655
$52.28
100
$4.931750
$493.18
500
$4.652594
$2,326.30
1000
$4.389240
$4,389.24
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Lifecycle Status
Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.
Production (Last Updated: 2 years ago) - Contact Plating
Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.
Silver - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Cable Mount - Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Cable, Free Hanging - Dielectric Material
a substance that is a poor conductor of electricity, but an efficient supporter of electrostatic field s.
PTFE - Body Material
The parameter "Body Material" in electronic components refers to the material used to construct the physical body or casing of the component. This material plays a crucial role in determining the component's durability, thermal conductivity, electrical insulation properties, and resistance to environmental factors such as moisture, heat, and mechanical stress. Common body materials for electronic components include plastics, ceramics, metals, and composites. Selecting the appropriate body material is essential to ensure the reliable performance and longevity of the electronic component in various operating conditions.
Brass - PCB Mounting Orientation
The PCB Mounting Orientation refers to the specific position or alignment in which an electronic component is mounted onto a printed circuit board (PCB). This parameter is crucial for ensuring proper functionality and performance of the component within the electronic system. The orientation can include factors such as the physical placement, angle, and direction in which the component is mounted on the PCB. It is important to follow the manufacturer's guidelines and specifications for the correct PCB Mounting Orientation to avoid potential issues such as electrical shorts, mechanical stress, or interference with other components on the board.
Straight - Body OrientationStraight
- Maximum Operating Temperature
the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
+165°C - Minimum Operating Temperature-65°C
- Termination MethodSolder
- Contact MaterialsBrass
- Cable TypesRG213/U, RG214/U, RG8 A/U, RG9 B/U
- RoHSCompliant
- Insulation MaterialsPolytetrafluoroethylene
- Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Solder - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
Plug - Number of Positions1
- Max Operating Temperature
The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
165 °C - Min Operating Temperature
The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.
-65 °C - Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Male - Fastening Type
There are 5 Main Types of Fastening Type: Screws, Nails, Bolts, Anchors, Rivets.
Threaded - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Straight - Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
18 mm - Frequency
In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.
500 MHz - Number of Contacts1
- Operating Frequency
Operating frequency is the frequency at which the communications are being made with the total bandwidth occupied by the carrier signal with modulation. Usually bandwidth of the antenna will be wider than the bandwidth of the signal so that more than one center frequency the antenna can be put in to effective use.
0 to 500MHz - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Compliant - Body Plating
Body Plating in electronic components refers to a process where a thin layer of metal is applied to the body of the component for various purposes such as improving electrical conductivity, corrosion resistance, and mechanical strength. This plating is typically done using techniques like electroplating or chemical deposition. The choice of plating material can vary depending on the specific requirements of the component and the application it is intended for. Overall, body plating plays a crucial role in enhancing the performance and durability of electronic components in various electronic devices and systems.
Silver - Sealable
The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.
No - Max Frequency
Max Frequency refers to the highest frequency at which an electronic component can operate effectively without degradation of performance. It is a critical parameter for devices such as transistors, capacitors, and oscillators, indicating their limitations in speed and response time. Exceeding the max frequency can lead to issues like signal distortion, heat generation, and potential failure of the component. Understanding this parameter is essential for designing circuits to ensure reliable and efficient operation.
500 MHz - Outside Diameter
The outer diameter (OD) of a hollow circular pipe is the measurement of the outside edges of the pipe passing through its center.
18 mm - Length35.6 mm
- Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No
1909763-1
TE Connectivity1408442-1
TE Connectivity227868-1
TE Connectivity Aerospace, Defense and Marine1045496-1
TE Connectivity Aerospace, Defense and MarineDK-621-0411-S
TE Connectivity Aerospace, Defense and Marine1218933-1
TE Connectivity Aerospace, Defense and Marine1051018-1
TE Connectivity Aerospace, Defense and MarineDK-621-0439-4S
TE Connectivity Aerospace, Defense and Marine1045677-1
TE Connectivity Aerospace, Defense and Marine2058-5119-02
TE Connectivity