

TE Connectivity 325602
Manufacturer No:
325602
Tiny WHSLManufacturer:
Utmel No:
2460-325602
Package:
-
Description:
Power Terminal (4/0)AWG 62.23mm 30.23mm Tin
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Lifecycle Status
Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.
Production (Last Updated: 2 days ago) - Contact Plating
Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.
Tin - Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Free Hanging - Material
In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.
Copper - Body Material
The parameter "Body Material" in electronic components refers to the material used to construct the physical body or casing of the component. This material plays a crucial role in determining the component's durability, thermal conductivity, electrical insulation properties, and resistance to environmental factors such as moisture, heat, and mechanical stress. Common body materials for electronic components include plastics, ceramics, metals, and composites. Selecting the appropriate body material is essential to ensure the reliable performance and longevity of the electronic component in various operating conditions.
Copper - QualificationMIL-PRF-39007
- Voltage, Rating-999 V
- Wire Size(4/0) AWG
- Product Depth (mm)30.23(mm)
- Operating Temp Range-55C to 105C
- Rad HardenedNo
- Inside Diameter16.46 mm
- Contact MaterialsCopper
- RoHSCompliant
- Unit Weight1.648000 oz
- Factory Pack QuantityFactory Pack Quantity50
- Mounting StylesCable Mount / Free Hanging
- Wire Gauge Max4/0 AWG
- ManufacturerTE Connectivity
- BrandTE Connectivity / AMP
- Insulation MaterialsNot Insulated
- Maximum Bundle Diameter-
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Box - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
325 - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Rectangular - Temperature Coefficient
The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.
650.0000 ppm/°C - TypePower Terminal
- Resistance
Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.
150 mOhm - ColorNot Required
- Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Female - SubcategoryTerminals
- Power Rating
The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.
3.0000 W - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Straight - Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
30.23 mm - Resistor Type
The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.
High Reliability, MIL-PRF-39007 - Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
- - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
Crimp - Contact Gender
Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.
- - Wire Gauge
a measurement of?wire?diameter.?This determines the amount of electric current the wire can safely carry, as well as its electrical resistance and weight.
(4/0)(AWG) - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Compliant - Plating
In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.
Tin - Body Plating
Body Plating in electronic components refers to a process where a thin layer of metal is applied to the body of the component for various purposes such as improving electrical conductivity, corrosion resistance, and mechanical strength. This plating is typically done using techniques like electroplating or chemical deposition. The choice of plating material can vary depending on the specific requirements of the component and the application it is intended for. Overall, body plating plays a crucial role in enhancing the performance and durability of electronic components in various electronic devices and systems.
Tin - Sealable
The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.
No - Insulation
Insulation in electronic components refers to the material properties that prevent the flow of electric current between conductive parts. It is critical for ensuring safety and reliability in circuits by minimizing unintended current paths. High insulation resistance helps protect against short circuits and enhances the durability of electronic devices by insulating high-voltage components from sensitive areas. Insulation can also affect signal integrity and can be a key factor in high-frequency applications.
Non-Insulated - Terminal Type
Terminal type or emulation specifies how your computer and the host computer to which you are connected exchange information.
Compression Lug - Product Type
a group of products which fulfill a similar need for a market segment or market as a whole.
Terminals - Stud/Tab Size
Stud/Tab Size is a parameter used to describe the physical dimensions of a stud or tab on an electronic component, such as a diode or transistor. This measurement typically refers to the diameter or width of the stud or tab, which is used for mounting or connecting the component to a circuit board or other components. The stud/tab size is important for ensuring proper fit and compatibility with other components or mounting hardware. Manufacturers provide specifications for stud/tab size to help users select the appropriate components for their specific application requirements.
8.33 mm - Resistance Tolerance
Tolerance is the percentage of error in the resistor's resistance, or how much more or less you can expect a resistor's actual measured resistance to be from its stated resistance. A gold tolerance band is 5% tolerance, silver is 10%, and no band at all would mean a 20% tolerance.
1 - Insulated Wire Support
The parameter "Insulated Wire Support" in electronic components refers to a feature that provides physical support and protection for insulated wires within the component. This support helps to prevent the wires from bending, breaking, or coming into contact with other components, which could lead to electrical shorts or malfunctions. Insulated wire support is crucial for maintaining the integrity and reliability of the electrical connections within the component, ensuring proper functionality and safety in electronic devices. Components with good insulated wire support are designed to securely hold the wires in place while also allowing for flexibility and movement as needed.
No - Heavy Duty
In the context of electronic components, the term "Heavy Duty" typically refers to components or devices that are designed to withstand higher levels of stress, such as higher voltage, current, or temperature, compared to standard components. These heavy-duty components are built with robust materials and construction techniques to ensure durability and reliability in demanding applications.Heavy-duty electronic components are often used in industrial, automotive, aerospace, and other harsh environments where standard components may not be able to meet the performance requirements. They are designed to operate efficiently and safely under extreme conditions, providing a higher level of performance and longevity.Overall, heavy-duty electronic components offer enhanced capabilities and resilience, making them suitable for applications that require ruggedness, high performance, and extended operational lifetimes. It is important to carefully consider the specific requirements of your project and select the appropriate heavy-duty components to ensure optimal performance and reliability.
No - Stud Diameter
Stud diameter refers to the measurement of the width of a cylindrical protrusion or stud on an electronic component. It is a crucial parameter that affects the component's mechanical stability and electrical connectivity, particularly in applications where components are mounted using screws or bolts. The stud diameter must be compatible with the corresponding mounting hardware to ensure secure and reliable attachment within electronic systems. Proper selection of stud diameter also contributes to thermal and electrical performance by ensuring adequate contact area for heat dissipation and conductivity.
8.3312 mm - Government Qualified
Government Qualified refers to electronic components that meet specific standards and requirements set by government agencies for use in military, aerospace, and other critical applications. These components undergo rigorous testing and evaluation to ensure reliability and performance under extreme conditions. Compliance with Government Qualified standards often involves additional documentation and traceability to guarantee the integrity and consistency of the components used in sensitive projects.
No - Number of Holes1
- Stud Size
Stud Size in electronic components refers to the physical dimensions of the threaded metal stud that is used for mounting and securing the component to a heat sink or chassis. The stud size is typically specified in terms of its diameter and length, and it is an important consideration for ensuring proper installation and thermal management of the component. Choosing the correct stud size is crucial to ensure a secure and reliable connection between the component and the mounting surface, as well as to facilitate efficient heat dissipation. Manufacturers provide stud size specifications in their datasheets to help users select the appropriate hardware for mounting electronic components.
8 mm - Product
In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.
Lug Terminals - Mounting Angle
The "Mounting Angle" parameter in electronic components refers to the angle at which a component is mounted on a circuit board or within an electronic system. It is important to consider the mounting angle during the design and assembly process to ensure proper functionality and performance of the component. The mounting angle can affect factors such as signal integrity, thermal management, and mechanical stress on the component. Manufacturers often provide specific guidelines or recommendations for the mounting angle of their components to ensure optimal operation and reliability.
Straight - Product Category
a particular group of related products.
Terminals - Product Length
Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.
14.22 - Product Length (mm)
The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.
62.23(mm) - Length62.23 mm
- Width30.23 mm
- Tab Thickness
Tab Thickness in electronic components refers to the thickness of the metal tab or lead that is used for electrical connections. This parameter is important as it determines the durability and conductivity of the component. A thicker tab can provide better current-carrying capacity and mechanical strength, while a thinner tab may be more suitable for applications where space is limited. Manufacturers specify the tab thickness in their component datasheets to ensure proper performance and compatibility with the intended application. It is essential to consider the tab thickness when selecting electronic components to ensure reliable operation and longevity of the device.
3.302 mm - Tongue Thickness
Tongue Thickness is a term commonly used in the context of electrical connectors and terminals. It refers to the thickness of the metal portion that is designed to make contact with another component or conductor. The tongue thickness is an important parameter as it determines the amount of pressure and surface area that will be in contact when the connector is mated with another component. A thicker tongue can provide better conductivity and mechanical strength, while a thinner tongue may offer more flexibility and easier insertion. Manufacturers specify the tongue thickness in their product datasheets to ensure proper mating and performance of the connector in a given application.
3.302 mm - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Lead Free