

TE Connectivity 40-3200-166
Manufacturer No:
40-3200-166
Tiny WHSLManufacturer:
Utmel No:
2460-40-3200-166
Package:
-
Description:
40-3200-166 datasheet pdf and Integrated Circuits (ICs) product details from TE Connectivity stock available at Utmel
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
BOARD - Board Mounting Option
Board Mounting Option refers to the method by which an electronic component is attached or mounted onto a circuit board. There are various board mounting options available, such as surface mount technology (SMT), through-hole mounting, and press-fit mounting. The choice of board mounting option depends on factors such as the type of component, the size of the circuit board, and the intended application. Proper selection of the board mounting option is crucial for ensuring the component's stability, reliability, and performance within the electronic system.
HOLE .138-.163 - Manufacturer Part Number40-3200-166
- Part Life Cycle CodeActive
- Ihs ManufacturerTE CONNECTIVITY LTD
- Risk Rank5.7
- Body Length7.65 inch
- Contact Finish MatingAU ON NI
- Contact MaterialsPHOSPHOR BRONZE
- Number of Rows Loaded4
- Operating Temperature-Max120 °C
- Operating Temperature-Min-55 °C
- Insulator MaterialGLASS FILLED POLYESTER
- Manufacturer Series40-3
- Mounting StylesSTRAIGHT
- Number Of ConnectorsONE
- Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
BOARD CONNECTOR - Total Number of Contacts264
- Terminal Pitch
The center distance from one pole to the next.
2.54 mm - Reach Compliance Code
Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.
unknown - Reference Standard
In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.
UL - Reliability
Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.
COMMERCIAL - Number Of PCB Rows4
- PCB Contact Pattern
The "PCB Contact Pattern" refers to the layout or arrangement of contact points on a printed circuit board (PCB) where electronic components are mounted or connected. This pattern determines how components will be physically and electrically connected to the PCB. The contact pattern typically includes pads, vias, traces, and other features that facilitate the soldering or mounting of components onto the board. It is crucial for ensuring proper electrical connections and reliable performance of the electronic device. Designing an appropriate PCB contact pattern is essential for the functionality, efficiency, and durability of the electronic components and the overall circuitry.
RECTANGULAR - Body Breadth
Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.
0.586 inch - Contact Gender
Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.
MALE - Body Depth
Body Depth is a parameter that refers to the physical measurement of the depth or thickness of an electronic component. It is typically measured from the bottom to the top of the component, excluding any external connectors or pins. Body Depth is an important specification as it determines how much space the component will occupy on a circuit board or within an electronic device. Manufacturers provide this measurement to help designers and engineers ensure proper fit and compatibility within their designs. Understanding the Body Depth of electronic components is crucial for efficient and effective integration into electronic systems.
0.525 inch - Contact Style
The parameter "Contact Style" in electronic components refers to the specific design and arrangement of the contact points that enable electrical connection in various devices. It dictates how components interface with each other, affecting factors such as reliability, durability, and performance. Different contact styles can include configurations like pin, socket, blade, or surface mount, each designed to cater to specific applications and requirements in circuit assembly.
SQ PIN-SKT - Insulation Resistance
The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.
100000000000 Ω - Mating Contact Pitch
Mating Contact Pitch refers to the distance between the center of one contact point to the center of the adjacent contact point in electronic components such as connectors or sockets. This parameter is crucial for ensuring proper alignment and connection between mating components. It helps determine the compatibility and interchangeability of different components, as components with the same mating contact pitch can be easily connected and disconnected. Manufacturers provide specifications for mating contact pitch to help users select compatible components for their electronic systems.
0.1 inch - Body/Shell Style
The parameter "Body/Shell Style" in electronic components refers to the physical design or shape of the outer casing or enclosure of the component. It is an important characteristic that helps in identifying and categorizing different types of components based on their form factor. The body/shell style can vary greatly depending on the specific component and its intended use, ranging from simple rectangular shapes to more complex designs with specific features for mounting, connecting, or protecting the internal components. Understanding the body/shell style of electronic components is crucial for proper installation, compatibility, and overall functionality within electronic circuits and systems.
RECEPTACLE - Termination Type
Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.
PRESS FIT - Polarization Key
Polarization Key is a design feature in electronic components, particularly connectors and integrated circuits, that ensures proper alignment and orientation during connection. It typically consists of physical notches or protrusions that prevent incorrect insertion, thereby protecting against potential damage and ensuring optimal performance. The key helps maintain consistent polarity, which is crucial in applications such as audio equipment, power supplies, and signal processing devices.
POLARIZED KEY - Dielectric Withstanding Voltage
Dielectric Withstanding Voltage (DWV) is a crucial parameter in electronic components that measures the maximum voltage a component can withstand without breaking down. It is also known as the insulation voltage or breakdown voltage. DWV is typically tested by applying a high voltage between the conductive parts of the component and the insulation material to ensure that the insulation can withstand the specified voltage without allowing current to flow through. This parameter is important for ensuring the safety and reliability of electronic components, especially in applications where high voltages are present. Components with a higher DWV rating are more suitable for use in high-voltage environments and applications.
1000VAC V - PCB Contact Row Spacing
PCB Contact Row Spacing refers to the distance between the centers of adjacent contact rows in a printed circuit board (PCB). It is an important parameter in the design and layout of electronic components, particularly for connectors and sockets. Proper row spacing ensures compatibility with corresponding component leads and facilitates efficient circuit assembly and operation. The spacing can affect the overall footprint of the component and influences layout considerations for routing traces on the PCB.
2.54 mm - Contact Finish Termination
Contact Finish Termination refers to the final layer of material applied to the electrical contact surfaces of electronic components, which is critical for ensuring reliable electrical connections. It often involves different plating processes such as gold, tin, nickel, or palladium, chosen based on the specific application and environmental conditions. The finish helps prevent oxidation, enhance conductivity, and improve solderability, ultimately influencing the performance and longevity of the connections in electronic devices.
GOLD - Contact Pattern
In electronic components, the "Contact Pattern" refers to the arrangement and design of the contact points on a component, such as a connector or a switch. The contact pattern determines how electrical connections are made between the component and other devices in a circuit. It includes the number, size, spacing, and configuration of the contact points, which can vary depending on the specific application and requirements of the component. A well-designed contact pattern is crucial for ensuring reliable and efficient electrical connections, as it affects factors such as signal integrity, power transmission, and durability of the component. Manufacturers carefully engineer contact patterns to meet the desired performance specifications and standards for the component's intended use.
RECTANGULAR - Mating Contact Row Spacing
Mating Contact Row Spacing refers to the distance between the centerlines of adjacent rows of mating contacts on an electronic component or connector. This parameter is crucial for ensuring proper alignment and connection between mating components. The spacing is typically specified in millimeters or inches and plays a significant role in determining the overall size and layout of the electronic system. It is important to adhere to the specified mating contact row spacing to ensure compatibility and reliable performance of the electronic components.
0.1 inch - Terminal Length
In electronic components, "Terminal Length" refers to the physical length of the terminal or lead of a component, such as a resistor, capacitor, or integrated circuit. It is the distance from the body of the component to the end of the terminal where connections are made. The terminal length is an important parameter as it determines how much space is required for soldering or connecting the component to a circuit board or other components. It also affects the overall size and layout of the circuit board. Manufacturers provide terminal length specifications to ensure proper installation and compatibility with the intended application.
0.188 inch - Plating Thickness
Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.
30u inch