TE Connectivity 5-66461-8
TE Connectivity 5-66461-8
feed

TE Connectivity 5-66461-8

Manufacturer No:

5-66461-8

Manufacturer:

TE Connectivity

Utmel No:

2460-5-66461-8

Package:

-

ECAD Model:

Description:

Contact SKT Crimp ST Cable Mount Loose Piece

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
5-66461-8 information

Specifications
TE Connectivity 5-66461-8 technical specifications, attributes, parameters and parts with similar specifications to TE Connectivity 5-66461-8.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    Production (Last Updated: 1 week ago)
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Cable
  • Contact Shape

    Contact shape in electronic components refers to the physical geometry of the interface where electrical connections are made. It plays a critical role in determining the quality and reliability of the connection, impacting factors such as resistance, current density, and heat dissipation. Various shapes, such as flat, cylindrical, or custom profiles, influence the contact area, enabling designers to optimize performance for specific applications. The contact shape also affects the mechanical stability of the connection, influencing wear and longevity.

    Square
  • Material

    In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.

    Brass
  • Underplate Material

    Underplate Material in electronic components refers to the material used for the underplate layer, which is a thin metallic coating applied to the surface of a component. The underplate material is typically chosen based on its ability to provide a stable and reliable surface for subsequent processes such as soldering or wire bonding. Common materials used for underplate include nickel, gold, silver, and tin. The choice of underplate material can impact the component's performance, durability, and overall quality. It is important to select the appropriate underplate material based on the specific requirements of the electronic component and its intended application.

    Nickel
  • Body Orientation
    Straight
  • Contact Sizes
    16
  • Termination Method
    Crimp
  • Contact Materials
    Brass
  • Mounting
    Cable Mount
  • Circuit Applications
    Signal
  • RoHS
    Compliant
  • Mounting Styles
    Cable
  • Factory Pack QuantityFactory Pack Quantity
    1000
  • Manufacturer
    TE Connectivity
  • Brand
    TE Connectivity
  • Tradename
    Multimate
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Carton
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    MATE-N-LOK
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Wire Wrap
  • Connector Type

    Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.

    Socket
  • Number of Positions
    16
  • Gender

    In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.

    Receptacle
  • Subcategory
    Circular Connectors
  • Contact Type

    Contact Type in electronic components refers to the specific design and configuration of the electrical contacts used to establish connections between components or devices. The contact type determines how the electrical signals are transmitted between the components, and it can vary based on factors such as the application requirements, signal type, and environmental conditions. Common contact types include pin contacts, socket contacts, surface mount contacts, and wire-to-board contacts. Understanding the contact type is crucial for ensuring proper connectivity and reliable performance in electronic systems.

    SIGNAL
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    2.54 mm
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Unshielded
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    Crimp
  • Contact Gender

    Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.

    SKT
  • Contact Style

    The parameter "Contact Style" in electronic components refers to the specific design and arrangement of the contact points that enable electrical connection in various devices. It dictates how components interface with each other, affecting factors such as reliability, durability, and performance. Different contact styles can include configurations like pin, socket, blade, or surface mount, each designed to cater to specific applications and requirements in circuit assembly.

    Socket
  • Wire Gauge

    a measurement of?wire?diameter.?This determines the amount of electric current the wire can safely carry, as well as its electrical resistance and weight.

    32(AWG)
  • ELV

    ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.

    Compliant
  • Max Current Rating

    The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.

    13 A
  • Plating

    In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.

    Tin
  • Wire/Cable Type

    Wire/Cable Type refers to the specific classification or category of wire or cable used in electronic components, which determines its characteristics, such as size, material, insulation, and intended application. Common types include stranded or solid conductors, and variations like coaxial, twisted pair, and ribbon cables. Each type is designed to meet specific requirements for electrical conductivity, flexibility, durability, and resistance to environmental factors. Selecting the appropriate wire or cable type is crucial for ensuring the performance and reliability of electronic devices and systems.

    Discrete
  • Test Current

    Test Current refers to a specified amount of electrical current applied to an electronic component during testing to evaluate its performance and characteristics. This current is typically defined by manufacturers to ensure that the component operates within its designed parameters. By measuring how the component reacts to this test current, engineers can determine its reliability, efficiency, and suitability for specific applications.

    13 A
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    Standard Circular Contacts
  • Shielded

    The term "Shielded" in electronic components refers to a design feature that involves the use of a protective shield or barrier to prevent electromagnetic interference (EMI) or radio frequency interference (RFI) from affecting the performance of the component. This shielding is typically made of conductive materials such as metal and is placed around sensitive electronic components to block or absorb unwanted electromagnetic signals.The shielded design helps to maintain the integrity of the signals being processed by the electronic component and reduces the risk of external interference causing malfunctions or disruptions. Shielding can be found in various electronic components such as cables, connectors, and circuit boards to ensure reliable operation in environments where electromagnetic interference is present.Overall, the shielding of electronic components plays a crucial role in maintaining signal quality, reducing noise, and enhancing the overall performance and reliability of electronic devices in various applications.

    No
  • Current Rating (Max)

    The parameter "Current Rating (Max)" in electronic components specifies the maximum amount of electric current that the component can safely handle without overheating or being damaged. It is a crucial specification that ensures reliable operation in a circuit, as exceeding this limit can lead to failure or reduced lifespan of the component. This rating is typically expressed in amperes (A) and varies depending on the type of component, its design, and its intended application. Knowing the current rating is essential for designers to ensure that components are adequately rated for their specific use cases.

    13(A)
  • Product

    In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.

    Contacts
  • Product Category

    a particular group of related products.

    Standard Circular Contacts
  • Product Length

    Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.

    34.44 mm
  • Product Length (mm)

    The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.

    34.44(mm)
  • Length
    34.44 mm
  • Plating Thickness

    Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.

    2.54 µm
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining