TE Connectivity 5796055-1
TE Connectivity 5796055-1
feed

TE Connectivity 5796055-1

Manufacturer No:

5796055-1

Manufacturer:

TE Connectivity

Utmel No:

2460-5796055-1

Package:

-

ECAD Model:

Description:

Conn VHDCI RCP 68 POS 1.6mm Solder RA Thru-Hole 68 Terminal 1 Port Box

Quantity:

Unit Price: $14.353670

Ext Price: $14.35

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 320

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $14.353670

    $14.35

  • 10

    $13.541198

    $135.41

  • 100

    $12.774715

    $1,277.47

  • 500

    $12.051618

    $6,025.81

  • 1000

    $11.369451

    $11,369.45

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
5796055-1 information

Specifications
Documents & Media
TE Connectivity 5796055-1 technical specifications, attributes, parameters and parts with similar specifications to TE Connectivity 5796055-1.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    Production (Last Updated: 4 days ago)
  • Factory Lead Time
    16 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Gold
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Number of Pins
    68
  • Shell Material

    The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.

    Steel
  • Material

    In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.

    Metal
  • Housing Material

    The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.

    Thermoplastic
  • Number of Terminals
    68
  • Mounting Option 1

    Mounting Option 1 in electronic components refers to a specific method or configuration for attaching or installing the component onto a circuit board or other electronic device. This parameter typically provides information on the recommended mounting technique, such as surface mount technology (SMT), through-hole mounting, or other specialized mounting options. Understanding the mounting option is crucial for proper assembly and integration of the component into the electronic system. It helps ensure that the component is securely attached and electrically connected, optimizing its performance and reliability within the overall circuit design.

    M2X0.4
  • Mounting Option 2

    Mounting Option 2 in electronic components refers to a specific method or configuration for attaching or installing the component onto a circuit board or other electronic device. This parameter typically provides details on the physical dimensions, orientation, and connection points required for proper mounting and integration within a larger electronic system. Different mounting options may include surface mount technology (SMT), through-hole mounting, or other specialized techniques depending on the specific component and application requirements. Understanding the mounting option is crucial for ensuring proper assembly, functionality, and reliability of the electronic component within the overall system design.

    LOCKING
  • PCB Mounting Orientation

    The PCB Mounting Orientation refers to the specific position or alignment in which an electronic component is mounted onto a printed circuit board (PCB). This parameter is crucial for ensuring proper functionality and performance of the component within the electronic system. The orientation can include factors such as the physical placement, angle, and direction in which the component is mounted on the PCB. It is important to follow the manufacturer's guidelines and specifications for the correct PCB Mounting Orientation to avoid potential issues such as electrical shorts, mechanical stress, or interference with other components on the board.

    Right Angle
  • PCB Mount Retention

    PCB Mount Retention refers to the ability of an electronic component to securely attach to a printed circuit board (PCB) and remain in place during operation and handling. This parameter is crucial for ensuring the reliability and stability of the component within the electronic system. Components with good PCB mount retention are less likely to become dislodged or detached from the PCB due to factors such as vibration, thermal cycling, or mechanical stress. Manufacturers often provide specifications or guidelines for PCB mount retention to help designers and engineers select the appropriate components for their applications.

    With
  • Operating Temp Range
    -55C to 85C
  • Mounting Styles
    Through Hole
  • Body Orientation
    Right Angle
  • Operating Temperature Max Deg. C
    85C
  • Contact Materials
    Phosphor Bronze
  • Operating Temperature Min Deg. C
    -55C
  • Voltage Rating Max
    30VAC
  • Termination Method
    Solder
  • Pitch (mm)
    1.6(mm)
  • Product Depth (mm)
    14.68(mm)
  • Base/Housing Material
    Thermoplastic
  • Mounting
    Through Hole
  • Voltage, Rating
    30 V
  • Circuit Applications
    Signal
  • Manufacturer Lifecycle Status
    ACTIVE (Last Updated: 4 days ago)
  • RoHS
    Compliant
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 85 C
  • Unit Weight
    0.143671 oz
  • Minimum Operating Temperature
    - 55 C
  • Factory Pack QuantityFactory Pack Quantity
    32
  • Manufacturer
    TE Connectivity
  • Brand
    TE Connectivity
  • Package Description
    ROHS COMPLIANT
  • Contact Finish Mating
    NOT SPECIFIED
  • Body Length
    1.681 inch
  • Insulator Material
    POLYETHYLENE
  • Operating Temperature-Min
    -55 °C
  • Operating Temperature-Max
    85 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    5796055-1
  • Number of Rows Loaded
    2
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    TE CONNECTIVITY LTD
  • Risk Rank
    0.67
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Box
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55 to 85 °C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    CHAMP
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Solder
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Connector Type

    Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.

    Wire to Board
  • Type
    IEEE 488
  • Number of Positions
    68
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    85 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55 °C
  • Number of Rows
    4
  • Gender

    In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.

    RCP
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    SHIELDED
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8536.69.40.30
  • Subcategory
    D-Sub Connectors
  • MIL Conformance

    MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.

    NO
  • DIN Conformance

    DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.

    NO
  • IEC Conformance

    IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.

    NO
  • Filter Feature

    In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.

    NO
  • Mixed Contacts

    In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.

    NO
  • Option
    GENERAL PURPOSE
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    1.6000 mm
  • Total Number of Contacts
    68
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Right Angle
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Shielded
  • Terminal Pitch

    The center distance from one pole to the next.

    1.6002 mm
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    14.68 mm
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    12A
  • Shell Finish

    Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.

    NICKEL
  • Reference Standard

    In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.

    UL
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    Solder
  • Reliability

    Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.

    COMMERCIAL
  • Number Of PCB Rows
    4
  • Number of Contacts
    68(POS)
  • PCB Contact Pattern

    The "PCB Contact Pattern" refers to the layout or arrangement of contact points on a printed circuit board (PCB) where electronic components are mounted or connected. This pattern determines how components will be physically and electrically connected to the PCB. The contact pattern typically includes pads, vias, traces, and other features that facilitate the soldering or mounting of components onto the board. It is crucial for ensuring proper electrical connections and reliable performance of the electronic device. Designing an appropriate PCB contact pattern is essential for the functionality, efficiency, and durability of the electronic components and the overall circuitry.

    STAGGERED
  • Body Breadth

    Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.

    0.236 inch
  • Contact Gender

    Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.

    FEMALE
  • UL Flammability Code

    The UL Flammability Code is a parameter used to indicate the flammability rating of electronic components. It is assigned by Underwriters Laboratories (UL) based on the component's performance in flammability tests. The code consists of a two-letter designation, with the first letter indicating the component's flammability rating and the second letter indicating the component's resistance to ignition. Components with a higher UL Flammability Code are less likely to catch fire or sustain combustion, making them safer for use in electronic devices. It is important to consider the UL Flammability Code when selecting components to ensure compliance with safety standards and regulations.

    94V-0
  • Housing Color

    Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.

    Black
  • Lead Length

    Lead length refers to the distance from the body of an electronic component to the end of its leads or terminals. It is an important specification in component design and packaging, as it affects the ease of soldering, the overall fit within a circuit board, and the electrical performance. Longer leads can facilitate easier connections but may also introduce increased resistance or inductance in high-frequency applications. Proper lead length is crucial for ensuring reliable connections and optimal performance in electronic circuits.

    2.27 mm
  • Empty Shell
    NO
  • Body Depth

    Body Depth is a parameter that refers to the physical measurement of the depth or thickness of an electronic component. It is typically measured from the bottom to the top of the component, excluding any external connectors or pins. Body Depth is an important specification as it determines how much space the component will occupy on a circuit board or within an electronic device. Manufacturers provide this measurement to help designers and engineers ensure proper fit and compatibility within their designs. Understanding the Body Depth of electronic components is crucial for efficient and effective integration into electronic systems.

    0.373 inch
  • Brand Name
    AMP
  • Rated Current (Signal)

    Rated Current (Signal) refers to the maximum continuous current that an electronic component can handle while maintaining its specified performance characteristics. It indicates the level of current that the device can safely operate under normal conditions without overheating or experiencing degradation. This parameter is crucial for ensuring reliability and efficiency in electronic circuits and components, helping to prevent damage due to excessive current.

    1.5 A
  • Contact Style

    The parameter "Contact Style" in electronic components refers to the specific design and arrangement of the contact points that enable electrical connection in various devices. It dictates how components interface with each other, affecting factors such as reliability, durability, and performance. Different contact styles can include configurations like pin, socket, blade, or surface mount, each designed to cater to specific applications and requirements in circuit assembly.

    BELLOWED TYPE
  • Contact Resistance

    Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.

    10 mΩ
  • Insulation Resistance

    The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.

    500000000 Ω
  • Mating Contact Pitch

    Mating Contact Pitch refers to the distance between the center of one contact point to the center of the adjacent contact point in electronic components such as connectors or sockets. This parameter is crucial for ensuring proper alignment and connection between mating components. It helps determine the compatibility and interchangeability of different components, as components with the same mating contact pitch can be easily connected and disconnected. Manufacturers provide specifications for mating contact pitch to help users select compatible components for their electronic systems.

    0.016 inch
  • Body/Shell Style

    The parameter "Body/Shell Style" in electronic components refers to the physical design or shape of the outer casing or enclosure of the component. It is an important characteristic that helps in identifying and categorizing different types of components based on their form factor. The body/shell style can vary greatly depending on the specific component and its intended use, ranging from simple rectangular shapes to more complex designs with specific features for mounting, connecting, or protecting the internal components. Understanding the body/shell style of electronic components is crucial for proper installation, compatibility, and overall functionality within electronic circuits and systems.

    RECEPTACLE
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    30 V
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    SURFACE MOUNT
  • Plating

    In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.

    Copper, Nickel
  • Dielectric Withstanding Voltage

    Dielectric Withstanding Voltage (DWV) is a crucial parameter in electronic components that measures the maximum voltage a component can withstand without breaking down. It is also known as the insulation voltage or breakdown voltage. DWV is typically tested by applying a high voltage between the conductive parts of the component and the insulation material to ensure that the insulation can withstand the specified voltage without allowing current to flow through. This parameter is important for ensuring the safety and reliability of electronic components, especially in applications where high voltages are present. Components with a higher DWV rating are more suitable for use in high-voltage environments and applications.

    250VAC V
  • Number of Ports

    A port is identified for each transport protocol and address combination by a 16-bit unsigned number,.

    1(Port)
  • PCB Contact Row Spacing

    PCB Contact Row Spacing refers to the distance between the centers of adjacent contact rows in a printed circuit board (PCB). It is an important parameter in the design and layout of electronic components, particularly for connectors and sockets. Proper row spacing ensures compatibility with corresponding component leads and facilitates efficient circuit assembly and operation. The spacing can affect the overall footprint of the component and influences layout considerations for routing traces on the PCB.

    1.143 mm
  • Contact Pattern

    In electronic components, the "Contact Pattern" refers to the arrangement and design of the contact points on a component, such as a connector or a switch. The contact pattern determines how electrical connections are made between the component and other devices in a circuit. It includes the number, size, spacing, and configuration of the contact points, which can vary depending on the specific application and requirements of the component. A well-designed contact pattern is crucial for ensuring reliable and efficient electrical connections, as it affects factors such as signal integrity, power transmission, and durability of the component. Manufacturers carefully engineer contact patterns to meet the desired performance specifications and standards for the component's intended use.

    RECTANGULAR
  • Insertion Force-Max

    Insertion Force-Max is a parameter used to specify the maximum force required to insert an electronic component into its corresponding socket or connector. It is a critical specification as it ensures that the component is securely and properly seated in the socket without causing any damage. This parameter is typically measured in units of force, such as Newtons or pounds-force, and is important for ensuring the reliability and longevity of the electronic assembly. Manufacturers provide this specification to help users understand the amount of force that can be safely applied during the insertion process to prevent any potential issues or failures.

    .6672 N
  • Withdrawl Force-Min
    .0834 N
  • Sealable

    The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.

    No
  • Insulator Color

    The parameter "Insulator Color" in electronic components refers to the color of the insulating material that surrounds or separates conductive elements within the component. The insulator is a non-conductive material that prevents electrical current from flowing between the conductive elements, ensuring proper functionality and safety of the component. The color of the insulator is often used for visual identification and organization of components in electronic circuits or systems. Different manufacturers may use various colors for insulators to distinguish between different types of components or to indicate specific characteristics such as voltage rating or temperature range.

    BLACK
  • Number of Signal Positions
    68
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    D-Sub Connectors - Standard Density
  • Hole Diameter

    The "Hole Diameter" parameter in electronic components refers to the size of the hole that is designed to accommodate a lead or pin of another component for soldering or connection purposes. It is a critical dimension that ensures proper alignment and fit between components during assembly. The hole diameter is typically specified in millimeters or inches and plays a crucial role in determining the mechanical stability and electrical connectivity of the overall circuit or device. Manufacturers provide specific hole diameter requirements to ensure compatibility and reliability in electronic assemblies.

    1.2 mm
  • Current Rating (Max)

    The parameter "Current Rating (Max)" in electronic components specifies the maximum amount of electric current that the component can safely handle without overheating or being damaged. It is a crucial specification that ensures reliable operation in a circuit, as exceeding this limit can lead to failure or reduced lifespan of the component. This rating is typically expressed in amperes (A) and varies depending on the type of component, its design, and its intended application. Knowing the current rating is essential for designers to ensure that components are adequately rated for their specific use cases.

    1/Contact(A)
  • Preloaded

    The parameter "Preloaded" in electronic components refers to a state where a certain amount of force or tension is applied to the component before it is put into use. This preloading helps to ensure that the component remains secure and stable during operation, especially in applications where there may be vibrations or other external forces acting on the component.Preloading can be achieved through various methods such as using springs, screws, or other mechanical means to apply the necessary force or tension to the component. By preloading the component, it can help to prevent issues such as loosening, shifting, or failure during operation, ultimately improving the reliability and performance of the electronic system.Overall, the preloaded parameter is an important consideration in the design and installation of electronic components, particularly in applications where stability and security are critical requirements. Proper preloading can help to enhance the overall durability and functionality of the electronic system.

    Yes
  • Shell Plating

    the outer-most structure on the hull of a steel or aluminum ship or boat.

    Nickel over Copper
  • Mating Connector Lock

    The parameter "Mating Connector Lock" in electronic components refers to a feature that ensures a secure and stable connection between two connectors. This lock mechanism is designed to prevent accidental disconnection or loosening of the connectors during operation, which can lead to signal loss or malfunction. The mating connector lock can come in various forms, such as locking tabs, screws, or latches, depending on the specific design of the connectors. Overall, this feature enhances the reliability and durability of the connection, making it suitable for applications where vibration, movement, or external forces may impact the connection stability.

    With
  • Mounting Angle

    The "Mounting Angle" parameter in electronic components refers to the angle at which a component is mounted on a circuit board or within an electronic system. It is important to consider the mounting angle during the design and assembly process to ensure proper functionality and performance of the component. The mounting angle can affect factors such as signal integrity, thermal management, and mechanical stress on the component. Manufacturers often provide specific guidelines or recommendations for the mounting angle of their components to ensure optimal operation and reliability.

    Right Angle
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Shielded
  • Terminal Length

    In electronic components, "Terminal Length" refers to the physical length of the terminal or lead of a component, such as a resistor, capacitor, or integrated circuit. It is the distance from the body of the component to the end of the terminal where connections are made. The terminal length is an important parameter as it determines how much space is required for soldering or connecting the component to a circuit board or other components. It also affects the overall size and layout of the circuit board. Manufacturers provide terminal length specifications to ensure proper installation and compatibility with the intended application.

    0.089 inch
  • Product Category

    a particular group of related products.

    D-Sub Standard Connectors
  • Product Length

    Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.

    42.7 mm
  • Product Length (mm)

    The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.

    42.7(mm)
  • Height
    6.97 mm
  • Length
    42.7 mm
  • Plating Thickness

    Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.

    760 nm
  • PCB Thickness

    PCB thickness refers to the measurement of the thickness of a printed circuit board, typically expressed in millimeters or mils. It plays a crucial role in determining the mechanical strength, flexibility, and thermal performance of the PCB. Standard thicknesses commonly range from 0.2 mm to 3.2 mm, with the most common thickness being 1.6 mm. The choice of PCB thickness affects the overall design and functionality of electronic devices, influencing factors such as signal integrity and power management.

    1.6 mm
  • Product Height (mm)

    Product Height (mm) in electronic components refers to the measurement of the component's vertical dimension. It indicates how tall the component is when installed in a circuit or system. This parameter is crucial for determining compatibility with enclosures, ensuring adequate space for components on printed circuit boards, and facilitating proper airflow and cooling in electronic designs.

    6.84(mm)
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    Unknown
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • Flammability Rating

    The Flammability Rating of electronic components refers to the material's ability to resist catching fire or burning when exposed to heat or flames. It is an important safety consideration in electronic design and manufacturing, especially for components that may be used in environments where fire hazards are a concern. The rating is typically expressed using a standardized scale, such as UL94, which classifies materials based on their flammability characteristics. Components with higher flammability ratings are more resistant to ignition and contribute to overall fire safety in electronic devices. It is crucial to select components with appropriate flammability ratings to ensure the reliability and safety of electronic products.

    UL94 V-0
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for TE Connectivity 5796055-1.