

TE Connectivity 7-1393090-0
Manufacturer No:
7-1393090-0
Tiny WHSLManufacturer:
Utmel No:
2460-7-1393090-0
Package:
Dust Cover
Description:
Electromechanical Relay 115VAC 2KOhm 20A DPDT(35.5x35.6x57)mm Plug-In General Purpose Relay
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Lifecycle Status
Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.
Production (Last Updated: 1 year ago) - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Dust Cover - Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Socket, Socketable - Number of Pins8
- Weight80.059053 g
- Coil Voltage AC115
- CoilResistance2000(ohm)
- Rad HardenedNo
- Maximum Power Rating2.5KVA
- SealUnsealed
- Dropout Volt46VAC
- Contact MaterialsSilver Nickel 90/10
- Mounting StylesPlug-In
- Operating Temp Range-40C to 50C
- LED IndicatorYes
- Product Depth (mm)35.6(mm)
- Pick-up Voltage (Max)97.8VAC
- Relay ConstructionNon-Latching
- Voltage Rating (AC)400 V
- RoHSCompliant
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Box or Tray - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Plug - Max Operating Temperature
The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
50 °C - Min Operating Temperature
The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.
-40 °C - Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
35.6 mm - Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
10 A - Pin Count
a count of all of the component leads (or pins)
8 - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
8-Pin Circular Plug - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Compliant - Max Voltage Rating (AC)
The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.
400 V - Max Current Rating
The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.
20 A - Throw Configuration
"Throw Configuration" is a term commonly used in the context of switches and relays in electronic components. It refers to the number of positions or states that the switch or relay can be set to. For example, a single-throw (ST) configuration means the switch has only one position, while a double-throw (DT) configuration means the switch has two positions.The throw configuration is important because it determines the versatility and functionality of the switch or relay. Different applications may require different throw configurations to control the flow of current or signals effectively. Understanding the throw configuration of a component is crucial for proper installation and operation within an electronic circuit.
DPDT - Contact Current Rating
The current rating of a contact is defined as the current level that creates a certain temperature rise of the contact spring — usually 20°C or 30°C. Both electrical and thermal factors govern the heat created by the current.
20(A) - Contact Form
A page on a website that allows users to communicate with the site owner. The page has fields for filling in name, address and type of comment. On most company websites, email and mailing addresses are also included; however, the contact form provides an immediate, convenient way for users to ask the company questions.
2 Form C - Relay Type
In electronic components, the parameter "Relay Type" refers to the specific classification or categorization of a relay based on its design, functionality, and application. Relays are electromechanical devices that are used to control the switching of circuits by opening or closing contacts in response to an electrical signal. The relay type typically indicates the specific characteristics of the relay, such as its switching mechanism (e.g., electromagnetic, solid-state), contact configuration (e.g., SPST, DPDT), operating voltage, current rating, and intended use (e.g., power relays, signal relays, automotive relays). Understanding the relay type is important for selecting the right relay for a particular application to ensure proper functionality and reliability.
General Purpose - Dropout Voltage
Dropout voltage is the input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage; this point occurs when the input voltage approaches the output voltage.
34.5 V - Operate Time
The time interval between the instant of the occurrence of a specified input condition to a system and the instant of completion of a specified operation.
15(ms) - Coil Type
There are 2 different types of 'coil'; one has copper on it (IUD) and the other contains hormone (Mirena IUS). Both are over 99% effective at protecting against pregnancy.
Non-Latching - Release Time
In telecommunication, release time is the time interval for a circuit to respond when an enabling signal is discontinued
10 ms - Power Consumption
Power consumption is the amount of input energy (measured in watts) required for an electrical appliance to function. This is opposed to power output which is a measure of the level of performance, of a heat pump for example.
1.2 W - Coil Power
Coil Power in electronic components refers to the amount of power consumed by a coil or inductor when an electrical current passes through it. It is a measure of the energy dissipated as heat within the coil due to its resistance. The coil power is typically specified in watts and is important to consider when designing circuits to ensure that the coil can handle the power without overheating. Properly managing coil power is crucial for the overall performance and reliability of electronic systems.
2.37 W - Contact Arrangement
Contact arrangement in electronic components refers to the configuration and organization of electrical contacts within a switch, relay, or connector. It defines how contacts are paired or grouped, determining their functionality in terms of opening or closing circuits, switching pathways, or making connections. Different contact arrangements, such as normally open, normally closed, or various multi-pole configurations, affect the behavior of the component in electronic circuits, influencing design choices based on the desired electrical performance.
DPDT - Contact Voltage Rating (AC)
The Contact Voltage Rating (AC) in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without experiencing damage or malfunction. This parameter is crucial for ensuring the reliability and safety of the component in electrical circuits. It is typically specified by the manufacturer and is important to consider when designing or selecting components for a particular application. Exceeding the Contact Voltage Rating (AC) can lead to electrical breakdown, insulation failure, or other issues that may compromise the performance and longevity of the component. It is essential to adhere to the specified voltage ratings to prevent potential hazards and ensure the proper functioning of electronic systems.
240 V - Coil Suppression Diode
A coil spike suppression diode is a protection device across the contactor coil. Energizing the contactor coil creates a magnetic field that forces the solenoid arm to engage the contacts. When the contactor is turned off, the magnetic field collapses causing a back “voltage spike” that can damage the controller.
No - Voltage Rating (VAC)
Voltage Rating (VAC) in electronic components refers to the maximum voltage that a component can safely handle without risk of failure or breakdown. It is typically expressed in volts, specifically in alternating current (AC) applications. Exceeding this voltage can lead to insulation breakdown, damage, or catastrophic failure of the component. Manufacturers specify this rating to ensure safe and reliable operation within the intended application.
400(V) - Product Length (mm)
The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.
35.5(mm) - Width35.5 mm
- Height57 mm
- Length35.5 mm
- Product Height (mm)
Product Height (mm) in electronic components refers to the measurement of the component's vertical dimension. It indicates how tall the component is when installed in a circuit or system. This parameter is crucial for determining compatibility with enclosures, ensuring adequate space for components on printed circuit boards, and facilitating proper airflow and cooling in electronic designs.
57(mm) - Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Not Applicable