TE Connectivity 749810-7
TE Connectivity 749810-7
feed

TE Connectivity 749810-7

Manufacturer No:

749810-7

Manufacturer:

TE Connectivity

Utmel No:

2460-749810-7

Package:

-

Usage Grade:

  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive

ECAD Model:

Description:

Pin, Plug 9-Position Plug IDC CABLE

Quantity:

Unit Price: $13.684574

Ext Price: $13.68

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 5

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $13.684574

    $13.68

  • 10

    $12.909975

    $129.10

  • 100

    $12.179222

    $1,217.92

  • 500

    $11.489832

    $5,744.92

  • 1000

    $10.839464

    $10,839.46

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
749810-7 information

Specifications
Product Details
TE Connectivity 749810-7 technical specifications, attributes, parameters and parts with similar specifications to TE Connectivity 749810-7.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    Production (Last Updated: 3 days ago)
  • Factory Lead Time
    13 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Gold
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Cable, Free Hanging
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    CABLE
  • Shell Material

    The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.

    Steel
  • Housing Material

    The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.

    Nylon/Polyester
  • Body Material

    The parameter "Body Material" in electronic components refers to the material used to construct the physical body or casing of the component. This material plays a crucial role in determining the component's durability, thermal conductivity, electrical insulation properties, and resistance to environmental factors such as moisture, heat, and mechanical stress. Common body materials for electronic components include plastics, ceramics, metals, and composites. Selecting the appropriate body material is essential to ensure the reliable performance and longevity of the electronic component in various operating conditions.

    Polypropylene
  • Number of Terminals
    9
  • Mounting Option 1

    Mounting Option 1 in electronic components refers to a specific method or configuration for attaching or installing the component onto a circuit board or other electronic device. This parameter typically provides information on the recommended mounting technique, such as surface mount technology (SMT), through-hole mounting, or other specialized mounting options. Understanding the mounting option is crucial for proper assembly and integration of the component into the electronic system. It helps ensure that the component is securely attached and electrically connected, optimizing its performance and reliability within the overall circuit design.

    LOCKING
  • Polarity of Input Voltage
    Bipolar
  • Number of ADCs
    1
  • Digital Supply Support
    No
  • Mounting
    Through Hole
  • Body Orientation
    Straight
  • Termination Method
    IDT
  • Base/Housing Material
    Nylon/Polyester
  • Contact Materials
    Brass/Phosphor Bronze
  • Plug / Receptacle
    PIN
  • Number of Contact Rows
    2
  • Operating Temp Range
    -55C to 105C
  • Mounting Styles
    Cable
  • Operating Voltage (Max)
    250VAC
  • Rad Hardened
    No
  • Circuit Applications
    Signal
  • Voltage, Rating
    250 V
  • Approvals
    CSA, UL
  • Manufacturer Lifecycle Status
    ACTIVE (Last Updated: 3 days ago)
  • RoHS
    Compliant
  • Insulation Materials
    Polypropylene
  • Shell Sizes
    1 (E)
  • Unit Weight
    1.328523 oz
  • Factory Pack QuantityFactory Pack Quantity
    1
  • Insert Arrangement
    E09
  • Manufacturer
    TE Connectivity
  • Brand
    TE Connectivity
  • Tradename
    AMPLIMITE
  • Filtered
    Unfiltered
  • Contact Finish Mating
    NOT SPECIFIED
  • Wire Size-Max
    22 AWG
  • Rohs Code
    Yes
  • Manufacturer Part Number
    749810-7
  • Wire Size-Min
    26 AWG
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    TE CONNECTIVITY LTD
  • Risk Rank
    2.21
  • Manufacturer Series
    749810
  • Usage Level
    Military grade
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55 to 125 °C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    IDC
  • Connector Type

    Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.

    Pin, Plug
  • Type
    D-Subminiature
  • Number of Positions
    9
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    105 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55 °C
  • Color
    Black
  • Number of Rows
    2
  • Gender

    In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.

    Plug
  • Subcategory
    D-Sub Connectors
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    2.77 mm
  • Total Number of Contacts
    9
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Yes
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    1.5 A
  • Shell Finish

    Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.

    TIN OVER COPPER
  • Reference Standard

    In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.

    UL
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    IDC
  • Reliability

    Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.

    COMMERCIAL
  • Number of Contacts
    9(POS)
  • Contact Gender

    Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.

    Pin (Male)
  • Housing Color

    Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.

    Black
  • Brand Name
    AMP
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    3.6, 1.6 V
  • Body/Shell Style

    The parameter "Body/Shell Style" in electronic components refers to the physical design or shape of the outer casing or enclosure of the component. It is an important characteristic that helps in identifying and categorizing different types of components based on their form factor. The body/shell style can vary greatly depending on the specific component and its intended use, ranging from simple rectangular shapes to more complex designs with specific features for mounting, connecting, or protecting the internal components. Understanding the body/shell style of electronic components is crucial for proper installation, compatibility, and overall functionality within electronic circuits and systems.

    PLUG
  • ELV

    ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.

    Compliant
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    IDC
  • Plating

    In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.

    Copper, Tin
  • Wire/Cable Type

    Wire/Cable Type refers to the specific classification or category of wire or cable used in electronic components, which determines its characteristics, such as size, material, insulation, and intended application. Common types include stranded or solid conductors, and variations like coaxial, twisted pair, and ribbon cables. Each type is designed to meet specific requirements for electrical conductivity, flexibility, durability, and resistance to environmental factors. Selecting the appropriate wire or cable type is crucial for ensuring the performance and reliability of electronic devices and systems.

    Round
  • Number of Ports

    A port is identified for each transport protocol and address combination by a 16-bit unsigned number,.

    1(Port)
  • Wire Gauge (Max)

    Wire Gauge (Max) refers to the maximum size of wire that can be accommodated by a particular electronic component, such as a connector or terminal. It indicates the largest diameter of wire that can be securely connected to the component without causing damage or compromising the electrical connection. This parameter is important to consider when selecting components for a project to ensure compatibility with the wire sizes being used. Exceeding the maximum wire gauge could lead to poor connections, overheating, or other issues that may affect the performance and safety of the electronic system.

    22 AWG
  • Wire Gauge (Min)

    Wire Gauge (Min) refers to the minimum thickness or diameter of the wire that can be used with a particular electronic component or device. It is an important parameter to consider when designing or selecting components for a circuit, as using a wire that is too thin may not be able to handle the required current, leading to overheating or even failure. The Wire Gauge (Min) specification ensures that the wire used is capable of carrying the necessary current without causing any issues. It is typically specified in American Wire Gauge (AWG) or metric units, depending on the manufacturer or region.

    26 AWG
  • Contact Finish Termination

    Contact Finish Termination refers to the final layer of material applied to the electrical contact surfaces of electronic components, which is critical for ensuring reliable electrical connections. It often involves different plating processes such as gold, tin, nickel, or palladium, chosen based on the specific application and environmental conditions. The finish helps prevent oxidation, enhance conductivity, and improve solderability, ultimately influencing the performance and longevity of the connections in electronic devices.

    TIN
  • Contact Pattern

    In electronic components, the "Contact Pattern" refers to the arrangement and design of the contact points on a component, such as a connector or a switch. The contact pattern determines how electrical connections are made between the component and other devices in a circuit. It includes the number, size, spacing, and configuration of the contact points, which can vary depending on the specific application and requirements of the component. A well-designed contact pattern is crucial for ensuring reliable and efficient electrical connections, as it affects factors such as signal integrity, power transmission, and durability of the component. Manufacturers carefully engineer contact patterns to meet the desired performance specifications and standards for the component's intended use.

    STAGGERED
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    Voltage/Current
  • Sealable

    The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.

    No
  • Architecture

    In electronic components, the parameter "Architecture" refers to the overall design and structure of the component. It encompasses the arrangement of internal components, the layout of circuitry, and the physical form of the component. The architecture of an electronic component plays a crucial role in determining its functionality, performance, and compatibility with other components in a system. Different architectures can result in variations in power consumption, speed, size, and other key characteristics of the component. Designers often consider the architecture of electronic components carefully to ensure optimal performance and integration within a larger system.

    SAR
  • Insulator Color

    The parameter "Insulator Color" in electronic components refers to the color of the insulating material that surrounds or separates conductive elements within the component. The insulator is a non-conductive material that prevents electrical current from flowing between the conductive elements, ensuring proper functionality and safety of the component. The color of the insulator is often used for visual identification and organization of components in electronic circuits or systems. Different manufacturers may use various colors for insulators to distinguish between different types of components or to indicate specific characteristics such as voltage rating or temperature range.

    BLACK
  • Insulation

    Insulation in electronic components refers to the material properties that prevent the flow of electric current between conductive parts. It is critical for ensuring safety and reliability in circuits by minimizing unintended current paths. High insulation resistance helps protect against short circuits and enhances the durability of electronic devices by insulating high-voltage components from sensitive areas. Insulation can also affect signal integrity and can be a key factor in high-frequency applications.

    Insulated
  • Resolution

    Resolution in electronic components refers to the smallest increment of measurement or change that can be detected or represented by the component. It is a crucial specification in devices such as sensors, displays, and converters, as it determines the level of detail or accuracy that can be achieved. For example, in a digital camera, resolution refers to the number of pixels that make up an image, with higher resolution indicating a greater level of detail. In analog-to-digital converters, resolution is the number of discrete values that can be represented in the digital output, determining the precision of the conversion process. Overall, resolution plays a significant role in determining the performance and capabilities of electronic components in various applications.

    12 Bit
  • Sampling Rate

    often described in the context of signal processing as the number of samples per time.

    40 ksps
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    D-Sub Connectors - Standard Density
  • Wire/Cable Diameter

    Wire/Cable Diameter refers to the measurement of the thickness of a wire or cable. This dimension is crucial as it influences the electrical resistance, current-carrying capacity, and overall performance of the component. A larger diameter typically allows for greater current flow and reduces resistance, while a smaller diameter can limit these attributes. The diameter is often specified in units such as millimeters or American Wire Gauge (AWG) numbers.

    8.13 mm
  • Screening Level

    In electronic components, the term "Screening Level" refers to the level of testing and inspection that a component undergoes to ensure its reliability and performance. This process involves subjecting the component to various tests, such as temperature cycling, burn-in, and electrical testing, to identify any defects or weaknesses that could affect its functionality. The screening level is typically determined based on the application requirements and the criticality of the component in the system. Components that undergo higher screening levels are generally more reliable but may also be more expensive. Overall, the screening level helps to ensure that electronic components meet the necessary quality standards for their intended use.

    Military
  • Voltage Supply Source

    A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unlimited current. A voltage source is the dual of a current source.

    Analog
  • Preloaded

    The parameter "Preloaded" in electronic components refers to a state where a certain amount of force or tension is applied to the component before it is put into use. This preloading helps to ensure that the component remains secure and stable during operation, especially in applications where there may be vibrations or other external forces acting on the component.Preloading can be achieved through various methods such as using springs, screws, or other mechanical means to apply the necessary force or tension to the component. By preloading the component, it can help to prevent issues such as loosening, shifting, or failure during operation, ultimately improving the reliability and performance of the electronic system.Overall, the preloaded parameter is an important consideration in the design and installation of electronic components, particularly in applications where stability and security are critical requirements. Proper preloading can help to enhance the overall durability and functionality of the electronic system.

    Yes
  • Number of ADC Channels
    1
  • Shell Plating

    the outer-most structure on the hull of a steel or aluminum ship or boat.

    Tin Over Copper
  • Max Supply Voltage (AC)

    Max Supply Voltage (AC) refers to the maximum alternating current voltage that an electronic component can safely handle without risk of damage or failure. This parameter ensures the component operates within its designed voltage range and prevents overheating or breakdown. Exceeding the maximum supply voltage can lead to degradation of performance or complete failure of the component. It is crucial for designers to consider this specification when integrating components into electronic circuits to maintain reliability and safety.

    250 V
  • Number of Analog Inputs
    1
  • Voltage Reference

    In electronic components, a Voltage Reference is a crucial parameter that refers to a stable and precise voltage source used as a point of reference for other circuitry. It provides a known voltage level that remains constant despite changes in temperature, power supply variations, or other external factors. Voltage references are commonly used in various applications such as analog-to-digital converters, voltage regulators, and sensor interfaces to ensure accurate and reliable operation. The accuracy and stability of the voltage reference directly impact the overall performance and reliability of the electronic system in which it is used.

    Internal
  • Insulation Diameter-Min

    Insulation Diameter-Min refers to the minimum value of the insulation thickness around a conductor or wire in electronic components. It is crucial for ensuring electrical safety and performance, as it prevents arcing and short circuits. This parameter is defined to ensure adequate dielectric strength and thermal resistance, thereby allowing the component to operate reliably under specified conditions. Insulation Diameter-Min is often specified in millimeters or inches and varies depending on the application and standards.

    0.185 inch
  • Mounting Angle

    The "Mounting Angle" parameter in electronic components refers to the angle at which a component is mounted on a circuit board or within an electronic system. It is important to consider the mounting angle during the design and assembly process to ensure proper functionality and performance of the component. The mounting angle can affect factors such as signal integrity, thermal management, and mechanical stress on the component. Manufacturers often provide specific guidelines or recommendations for the mounting angle of their components to ensure optimal operation and reliability.

    Straight
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Shielded
  • Typical Power Dissipation

    The parameter "Typical Power Dissipation" in electronic components refers to the amount of power that the component dissipates as heat during normal operation. It is a crucial specification as it indicates the maximum amount of power that the component can handle without overheating. Exceeding the typical power dissipation rating can lead to thermal issues, reduced performance, or even damage to the component. Designers must consider this parameter when selecting components and designing circuits to ensure proper heat management and reliable operation.

    2.08 W
  • Input Voltage

    Input voltage is the voltage supplied to an electronic component or circuit for it to function properly. It is the driving force that enables the component to perform its intended tasks, such as amplifying signals or powering devices. The input voltage can vary depending on the design specifications of the component and its intended application. Exceeding the specified input voltage can lead to damage or failure of the component.

    ±24 V
  • Product Category

    a particular group of related products.

    D-Sub Standard Connectors
  • Width
    12.5 mm
  • Height
    48.5 mm
  • Plating Thickness

    Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.

    FLASH inch
  • Flammability Rating

    The Flammability Rating of electronic components refers to the material's ability to resist catching fire or burning when exposed to heat or flames. It is an important safety consideration in electronic design and manufacturing, especially for components that may be used in environments where fire hazards are a concern. The rating is typically expressed using a standardized scale, such as UL94, which classifies materials based on their flammability characteristics. Components with higher flammability ratings are more resistant to ignition and contribute to overall fire safety in electronic devices. It is crucial to select components with appropriate flammability ratings to ensure the reliability and safety of electronic products.

    UL94 V-0
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

749810-7 Overview

It comes in Pin, Plug packaging.There is a mounting type of CABLE for this device.It is necessary to use a Bulk case for packaging the product.You should use it when it's below 105 °C.A minimum temperature of -55 °C is required for the operation of this device.A variety of tasks can be managed through its 1(Port) ports.Cable, Free Hanging is used to mount the part.The operating supply voltage of this memory is 3.6, 1.6 V.In this case, the device operates at -55 to 125 °C Operating Temperature.

749810-7 Features


749810-7 Applications

There are a lot of TE Connectivity
749810-7 D-Sub Connectors applications.


  • Transportation
  • Embedded systems
  • Datacom
  • Communication
  • Medical technology
  • Military Technology
  • Measuring & Control Technology
  • Instrumentation
  • Automotive Electronics
  • Telecommunications
749810-7 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "749810-7" in TE Connectivity 749810-7.
  • Part Number
  • Manufacturer
  • Package
  • Description