

TE Connectivity Aerospace, Defense and Marine 1218434-5
Manufacturer No:
1218434-5
Tiny WHSLManufacturer:
Utmel No:
2460-1218434-5
Package:
-
Datasheet:
Description:
Military, MIL-DTL-24308, AMPLIMITE 109 Series D-Sub Receptacle, Female Sockets Female Signal Solder 5 DD D Through Hole, Right Angle Gold Steel, Cadmium Plated
Quantity:
Unit Price: $72.916825
Ext Price: $72.92
Delivery:





Payment:











In Stock : 103
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$72.916825
$72.92
10
$68.789458
$687.89
100
$64.895715
$6,489.57
500
$61.222372
$30,611.19
1000
$57.756955
$57,756.96
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Lifecycle Status
Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.
ACTIVE (Last Updated: 2 days ago) - Factory Lead Time19 Weeks
- Contact Plating
Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.
Gold, Nickel - Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Through Hole - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Through Hole, Right Angle - Shell Material
The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.
Steel - Housing Material
The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.
Polyester - Shell Material, Finish
Shell Material, Finish refers to the type of material and the surface treatment used for the outer casing of electronic components, such as connectors and enclosures. The material can affect durability, conductivity, and electromagnetic shielding, while the finish relates to the surface texture and coatings that may enhance corrosion resistance, aesthetic appeal, or mechanical performance. Common materials include plastic, metal, and composites, with finishes that may vary from anodized aluminum to painted surfaces or protective coatings. This parameter is crucial for ensuring the component's functionality and longevity in its intended application.
Steel, Cadmium Plated - PCB Mounting Orientation
The PCB Mounting Orientation refers to the specific position or alignment in which an electronic component is mounted onto a printed circuit board (PCB). This parameter is crucial for ensuring proper functionality and performance of the component within the electronic system. The orientation can include factors such as the physical placement, angle, and direction in which the component is mounted on the PCB. It is important to follow the manufacturer's guidelines and specifications for the correct PCB Mounting Orientation to avoid potential issues such as electrical shorts, mechanical stress, or interference with other components on the board.
Right Angle - Contact MaterialsBrass
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-55°C~125°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Military, MIL-DTL-24308, AMPLIMITE 109 - Published2008
- Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
Not Applicable - Number of Terminations50
- Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Solder - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
Receptacle, Female Sockets - ColorBlack
- Number of Rows3
- Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Female - MIL Conformance
MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.
YES - DIN Conformance
DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.
NO - IEC Conformance
IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.
NO - Filter Feature
In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.
NO - Contact Type
Contact Type in electronic components refers to the specific design and configuration of the electrical contacts used to establish connections between components or devices. The contact type determines how the electrical signals are transmitted between the components, and it can vary based on factors such as the application requirements, signal type, and environmental conditions. Common contact types include pin contacts, socket contacts, surface mount contacts, and wire-to-board contacts. Understanding the contact type is crucial for ensuring proper connectivity and reliable performance in electronic systems.
Signal - Mixed Contacts
In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.
NO - OptionGENERAL PURPOSE
- Pitch
In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.
2.77mm - Total Number of Contacts50
- Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Right Angle - Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
5A - Contact Finish
Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.
Gold - Reliability
Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.
COMMERCIAL - Number Of PCB Rows3
- PCB Contact Pattern
The "PCB Contact Pattern" refers to the layout or arrangement of contact points on a printed circuit board (PCB) where electronic components are mounted or connected. This pattern determines how components will be physically and electrically connected to the PCB. The contact pattern typically includes pads, vias, traces, and other features that facilitate the soldering or mounting of components onto the board. It is crucial for ensuring proper electrical connections and reliable performance of the electronic device. Designing an appropriate PCB contact pattern is essential for the functionality, efficiency, and durability of the electronic components and the overall circuitry.
STAGGERED - Body Breadth
Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.
0.62 inch - Lead Length
Lead length refers to the distance from the body of an electronic component to the end of its leads or terminals. It is an important specification in component design and packaging, as it affects the ease of soldering, the overall fit within a circuit board, and the electrical performance. Longer leads can facilitate easier connections but may also introduce increased resistance or inductance in high-frequency applications. Proper lead length is crucial for ensuring reliable connections and optimal performance in electronic circuits.
3.175mm - Empty ShellNO
- Body Depth
Body Depth is a parameter that refers to the physical measurement of the depth or thickness of an electronic component. It is typically measured from the bottom to the top of the component, excluding any external connectors or pins. Body Depth is an important specification as it determines how much space the component will occupy on a circuit board or within an electronic device. Manufacturers provide this measurement to help designers and engineers ensure proper fit and compatibility within their designs. Understanding the Body Depth of electronic components is crucial for efficient and effective integration into electronic systems.
0.604 inch - Flange Feature
In electronic components, the term "Flange Feature" refers to a specific design element that involves a protruding rim or edge around the perimeter of the component. This flange feature serves multiple purposes, such as providing mechanical support, facilitating mounting or installation, enhancing stability, and improving heat dissipation. The flange feature can vary in size, shape, and material depending on the specific requirements of the component and its intended application. Overall, the presence of a flange feature in electronic components helps ensure proper functionality, durability, and ease of integration within electronic systems.
Housing/Shell (Unthreaded) - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Non-Compliant - Plating
In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.
Cadmium, Steel - Connector Style
Connector Style in electronic components refers to the physical design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the shape, size, and layout of the connector, as well as the method of attachment and the number of pins or contacts it has. Different connector styles are used for various applications, such as board-to-board connections, cable-to-board connections, or wire-to-board connections. The connector style plays a crucial role in determining the compatibility and functionality of electronic devices, as it ensures proper signal transmission and power delivery between interconnected components.
D-Sub - Number of Ports
A port is identified for each transport protocol and address combination by a 16-bit unsigned number,.
1 - PCB Contact Row Spacing
PCB Contact Row Spacing refers to the distance between the centers of adjacent contact rows in a printed circuit board (PCB). It is an important parameter in the design and layout of electronic components, particularly for connectors and sockets. Proper row spacing ensures compatibility with corresponding component leads and facilitates efficient circuit assembly and operation. The spacing can affect the overall footprint of the component and influences layout considerations for routing traces on the PCB.
2.8448 mm - Sealable
The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.
No - Shell Size, Connector Layout
The shell of a circular connector is a cylinder available in incremental sizes starting as small as . 375 diameter up to 3.25 diameter and larger.
5 DD D - Hole Diameter
The "Hole Diameter" parameter in electronic components refers to the size of the hole that is designed to accommodate a lead or pin of another component for soldering or connection purposes. It is a critical dimension that ensures proper alignment and fit between components during assembly. The hole diameter is typically specified in millimeters or inches and plays a crucial role in determining the mechanical stability and electrical connectivity of the overall circuit or device. Manufacturers provide specific hole diameter requirements to ensure compatibility and reliability in electronic assemblies.
3.175 mm - Backset Spacing
Backset spacing refers to the distance between the edge of an electronic component and the substrate or board on which it is mounted. It is crucial for ensuring proper alignment and avoiding physical interference with other components or features on the board. Adequate backset spacing helps in managing thermal performance and allows for safe operation within the design specifications of the electronic system.
0.318 (8.08mm) - Length67.31mm
- Width10.8mm
- Contact Finish Thickness
Contact Finish Thickness refers to the measurement of the layer of conductive material applied to the surfaces of electrical contacts in electronic components. This thickness is critical as it influences the electrical conductivity, solderability, wear resistance, and overall performance of the connection. The materials used for the contact finish can include gold, silver, or other metals, and the specified thickness is designed to ensure reliable operation over the component's lifespan.
10.0μin 0.25μm - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
Non-RoHS Compliant - Flammability Rating
The Flammability Rating of electronic components refers to the material's ability to resist catching fire or burning when exposed to heat or flames. It is an important safety consideration in electronic design and manufacturing, especially for components that may be used in environments where fire hazards are a concern. The rating is typically expressed using a standardized scale, such as UL94, which classifies materials based on their flammability characteristics. Components with higher flammability ratings are more resistant to ignition and contribute to overall fire safety in electronic devices. It is crucial to select components with appropriate flammability ratings to ensure the reliability and safety of electronic products.
UL94 V-0 - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Contains Lead