pid_13299986_5962-87802012a-analog-devices-datasheet-10546212.pdf Outline Dimensions_1
pid_13299986_5962-87802012a-analog-devices-datasheet-10546212.pdf Outline Dimensions_1
feed

Texas Instruments 5962-87802012A

DAC DAC Voltage

Manufacturer No:

5962-87802012A

Manufacturer:

Texas Instruments

Utmel No:

2502-5962-87802012A

Package:

LCC

Usage Grade:

  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive

ECAD Model:

Description:

DAC Voltage 1 B B 2.03mm μm 8.89mm mm

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
5962-87802012A information

Specifications
Documents & Media
Product Details
Texas Instruments 5962-87802012A technical specifications, attributes, parameters and parts with similar specifications to Texas Instruments 5962-87802012A.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 1 week ago)
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Lead, Tin
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    LCC
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Number of Pins
    20
  • Usage Level
    Military grade
  • Number of Terminations
    20
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    3A001.A.2.C
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55°C
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    QUAD
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    15V
  • Terminal Pitch

    The center distance from one pole to the next.

    1.27mm
  • Pin Count

    a count of all of the component leads (or pins)

    20
  • Qualification Status

    An indicator of formal certification of qualifications.

    Qualified
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Voltage
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    15V
  • Polarity

    In electronic components, polarity refers to the orientation or direction in which the component must be connected in a circuit to function properly. Components such as diodes, capacitors, and LEDs have polarity markings to indicate which terminal should be connected to the positive or negative side of the circuit. Connecting a component with incorrect polarity can lead to malfunction or damage. It is important to pay attention to polarity markings and follow the manufacturer's instructions to ensure proper operation of electronic components.

    Bipolar, Unipolar
  • Power Supplies

    an electronic circuit that converts the voltage of an alternating current (AC) into a direct current (DC) voltage.?

    5/15GND/-5V
  • Temperature Grade

    Temperature grades represent a tire's resistance to heat and its ability to dissipate heat when tested under controlled laboratory test conditions.

    MILITARY
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    Parallel
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    15.75V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    14.25V
  • Number of Bits
    8
  • Supply Current-Max

    Supply Current-Max refers to the maximum amount of current that an electronic component or circuit can draw from its power supply under specified operating conditions. It is a critical parameter that determines the power consumption and thermal performance of the device. Exceeding this limit can lead to overheating, potential damage, or failure of the component. Knowing the Supply Current-Max helps in designing circuits that ensure proper operation and reliability.

    16mA
  • Converter Type

    The parameter "Converter Type" in electronic components refers to the classification of devices that convert one form of energy or signal to another. This includes devices such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and various types of signal converters used in communication, power management, and measurement systems. Each converter type is designed to facilitate the manipulation or transformation of signals to meet specific application requirements. The choice of converter type typically depends on factors such as the signal characteristics, required accuracy, and conversion speed.

    D/A CONVERTER
  • Resolution

    Resolution in electronic components refers to the smallest increment of measurement or change that can be detected or represented by the component. It is a crucial specification in devices such as sensors, displays, and converters, as it determines the level of detail or accuracy that can be achieved. For example, in a digital camera, resolution refers to the number of pixels that make up an image, with higher resolution indicating a greater level of detail. In analog-to-digital converters, resolution is the number of discrete values that can be represented in the digital output, determining the precision of the conversion process. Overall, resolution plays a significant role in determining the performance and capabilities of electronic components in various applications.

    1 B
  • Settling Time

    In control theory the settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier output has entered and remained within a specified error band.

    5 μs
  • Power Consumption

    Power consumption is the amount of input energy (measured in watts) required for an electrical appliance to function. This is opposed to power output which is a measure of the level of performance, of a heat pump for example.

    90mW
  • Linearity Error-Max (EL)

    Linearity Error-Max (EL) is a parameter used to quantify the deviation of a device's output from a straight line response over its specified input range. It measures the maximum difference between the ideal output and the actual output of the component when subjected to varying input levels. A smaller linearity error indicates better performance, as it signifies more accurate and consistent output behavior across the input spectrum. This parameter is critical in applications requiring precision, such as analog-to-digital converters and other signal processing components.

    0.3906%
  • Integral Nonlinearity (INL)

    Integral Nonlinearity (INL) is a measure of the deviation of a transfer function from a straight line when considering the entire output range of a device, such as a digital-to-analog converter or an analog-to-digital converter. It is quantified as the maximum deviation of the actual output from the ideal output across the entire input range, expressed as a percentage of the full-scale output. INL indicates how closely the output follows a linear model, influencing the accuracy of the signal representation in electronic components. A lower INL value signifies better linearity and higher precision in signal processing applications.

    1 LSB
  • Screening Level

    In electronic components, the term "Screening Level" refers to the level of testing and inspection that a component undergoes to ensure its reliability and performance. This process involves subjecting the component to various tests, such as temperature cycling, burn-in, and electrical testing, to identify any defects or weaknesses that could affect its functionality. The screening level is typically determined based on the application requirements and the criticality of the component in the system. Components that undergo higher screening levels are generally more reliable but may also be more expensive. Overall, the screening level helps to ensure that electronic components meet the necessary quality standards for their intended use.

    MIL-STD-883
  • Input Bit Code

    "Input Bit Code" is a parameter used in electronic components, particularly in digital devices such as microcontrollers and integrated circuits. It refers to the binary code or sequence of bits that are used to represent input data or commands to the component. The input bit code is typically specified by the manufacturer and is used to configure the behavior or functionality of the component.In simpler terms, the input bit code is like a set of instructions that the electronic component understands and acts upon accordingly. By providing the correct input bit code, users can control the operation of the component and make it perform specific tasks or functions. Understanding and correctly using the input bit code is essential for proper operation and integration of electronic components in various electronic systems and applications.

    OFFSET BINARY
  • Conversion Rate

    the number of conversions divided by the total number of visitors.

    143 ksps
  • Negative Supply Voltage-Nom

    The parameter "Negative Supply Voltage-Nom" in electronic components refers to the nominal voltage level that can be safely applied as the negative supply voltage to the component. This parameter is important for ensuring the proper functioning and reliability of the component within its specified operating conditions. It indicates the voltage level that the component is designed to operate with when a negative voltage supply is required. It is crucial to adhere to this specified voltage range to prevent damage to the component and maintain its performance characteristics.

    -5V
  • Analog Output Voltage-Max

    Analog Output Voltage-Max refers to the maximum voltage level that an electronic component can produce at its output in an analog circuit. This parameter is crucial in determining the range of voltage signals that the component can handle or generate without causing damage or distortion. It is typically specified in datasheets to provide users with information on the upper limit of the output voltage that can be safely applied or expected from the component. Designers use this parameter to ensure that the component operates within its specified limits and to prevent any potential issues related to overvoltage conditions.

    5V
  • Number of DAC Channels

    A DAC is a device that converts a digital, typically binary, code to an analog signal, such as a current, voltage, or electric charge. One DAC converter can have several channels. Each channel can sample an analog output from numerical values that are converted to output voltages.

    4
  • Analog Output Voltage-Min

    Analog Output Voltage-Min is a parameter that specifies the minimum voltage level that an electronic component, such as a sensor or integrated circuit, can output in an analog signal. This parameter is crucial for determining the range of voltages that the component can produce accurately. It is important to ensure that the output voltage does not fall below this minimum value to prevent signal distortion or loss of data integrity. Designers and engineers use this specification to select components that meet the required voltage output range for their specific application.

    -5V
  • Height
    2.03mm
  • Length
    8.89mm
  • Width
    8.89mm
  • Thickness

    Thickness in electronic components refers to the measurement of how thick a particular material or layer is within the component structure. It can pertain to various aspects, such as the thickness of a substrate, a dielectric layer, or conductive traces. This parameter is crucial as it impacts the electrical, mechanical, and thermal properties of the component, influencing its performance and reliability in electronic circuits.

    1.83mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Contains Lead
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Texas Instruments 5962-87802012A.

5962-87802012A Overview

A LCC package is provided with this component. An electrical supply voltage of 15V powers it. As a whole, it has 20 terminations. 20 pins are designed into the device. A 15V-volt supply allows designers to fully utili15Ve its flexibility. Powered by a 5/15GND/-5V power supply, it can be operated by almost anyone. As far as the maximum operating temperature of this module is concerned, it reaches 125°C. Operating temperatures should exceed -55°C. In addition to this, it has 20 pins. A maximum voltage of 15.75V can be supplied to it. As long as the supply voltage is at least 14.25V, it is able to work properly.

5962-87802012A Features

LCC package
20 pin count
20 pins

5962-87802012A Applications

There are a lot of Texas Instruments
5962-87802012A Digital to Analog Converters (DAC) applications.


  • Data Distribution System
  • Digital Potentiometer
  • Software Radio
  • Wireless infrastructure:
  • WCDMA, CDMA2000, TD-SCDMA, WiMAX
  • Wideband communications:
  • LMDS/MMDS, point-to-point
  • Instrumentation:
  • RF signal generators, arbitrary waveform generators
  • Mobile Communications
5962-87802012A Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "5962-87802012A" in Texas Instruments 5962-87802012A.
  • Part Number
  • Manufacturer
  • Package
  • Description
  • 5962-87802012CTexas Instruments

    -

    DAC 4-CH R-2R 8-bit 20-Pin CLLCC Tube

  • 5962-8992801XATexas Instruments

    -

    5962-8992801XA datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-87802012ATexas Instruments

    LCC

    5962-87802012A datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-8770001EATexas Instruments

    CDIP

    5962-8770001EA datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-87700012ATexas Instruments

    20-CLCC

    8-BIT MULTIPLYING BUFFERED DAC

  • 5962-9955701QPATexas Instruments

    CDIP

    5962-9955701QPA datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-9955701Q2ATexas Instruments

    LCC

    5962-9955701Q2A datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-9957601Q2ATexas Instruments

    -

    5962-9957601Q2A datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-9955702Q2ATexas Instruments

    LCC

    5962-9955702Q2A datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.

  • 5962-0724701VXATexas Instruments

    BGA

    5962-0724701VXA datasheet pdf and Data Acquisition - Digital to Analog Converters (DAC) product details from Texas Instruments stock available at Utmel.