Texas Instruments TMS320C6748BZCED4
Texas Instruments TMS320C6748BZCED4
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_1
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_2
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_3
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_4
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_5
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_6
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf  Pinout Diagram_7
pid_6115981_tms320c6748bzced4-texas-instruments-datasheet-33022095.pdf Outline Dimensions_1
feed

Texas Instruments TMS320C6748BZCED4

0.65mm CPLD 361 Pin

Manufacturer No:

TMS320C6748BZCED4

Manufacturer:

Texas Instruments

Utmel No:

2502-TMS320C6748BZCED4

Package:

361-LFBGA

ECAD Model:

Description:

0.65mm CPLD TMS320C674x Series 320C6748 361 Pin 456MHz 1.2V 361-LFBGA

Quantity:

Unit Price: $57.293630

Ext Price: $57.29

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $57.293630

    $57.29

  • 10

    $54.050594

    $540.51

  • 100

    $50.991126

    $5,099.11

  • 500

    $48.104836

    $24,052.42

  • 1000

    $45.381921

    $45,381.92

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
TMS320C6748BZCED4 information

Specifications
Documents & Media
Product Details
Product Comparison
Texas Instruments TMS320C6748BZCED4 technical specifications, attributes, parameters and parts with similar specifications to Texas Instruments TMS320C6748BZCED4.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    361-LFBGA
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Number of Pins
    361
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~90°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tray
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    TMS320C674x
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e1
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    3 (168 Hours)
  • Number of Terminations
    361
  • Type
    Fixed/Floating Point
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Tin/Silver/Copper (Sn/Ag/Cu)
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    BOTTOM
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    BALL
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    1.2V
  • Terminal Pitch

    The center distance from one pole to the next.

    0.65mm
  • Frequency

    In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.

    456MHz
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    320C6748
  • Pin Count

    a count of all of the component leads (or pins)

    361
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    1.35V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    950mV
  • RAM Size

    RAM size refers to the amount of random access memory (RAM) available in an electronic component, such as a computer or smartphone. RAM is a type of volatile memory that stores data and instructions that are actively being used by the device's processor. The RAM size is typically measured in gigabytes (GB) and determines how much data the device can store and access quickly for processing. A larger RAM size allows for smoother multitasking, faster loading times, and better overall performance of the electronic component. It is an important factor to consider when choosing a device, especially for tasks that require a lot of memory, such as gaming, video editing, or running multiple applications simultaneously.

    128kB
  • Bit Size

    In electronic components, "Bit Size" refers to the number of bits that can be processed or stored by a particular component. A bit is the smallest unit of data in computing and can have a value of either 0 or 1. The Bit Size parameter is commonly used to describe the capacity or performance of components such as microprocessors, memory modules, and data buses. A larger Bit Size generally indicates a higher processing capability or storage capacity, allowing for more complex operations and larger amounts of data to be handled efficiently. It is an important specification to consider when selecting electronic components for specific applications that require certain levels of performance and data processing capabilities.

    32
  • Data Bus Width

    The data bus width in electronic components refers to the number of bits that can be transferred simultaneously between the processor and memory. It determines the amount of data that can be processed and transferred in a single operation. A wider data bus allows for faster data transfer speeds and improved overall performance of the electronic device. Common data bus widths include 8-bit, 16-bit, 32-bit, and 64-bit, with higher numbers indicating a larger capacity for data transfer. The data bus width is an important specification to consider when evaluating the speed and efficiency of a computer system or other electronic device.

    64b
  • Address Bus Width

    A computer system has an address bus with 8 parallel lines. This means that the address bus width is 8 bits.

    24
  • Boundary Scan

    Boundary scan is a testing technique used in electronic components to verify the interconnections between integrated circuits on a printed circuit board. It allows for the testing of digital circuits by providing a way to shift data in and out of devices through a serial interface. This method helps in identifying faults such as short circuits, open circuits, and incorrect connections without the need for physical access to the individual components. Boundary scan is commonly used during manufacturing, testing, and debugging processes to ensure the quality and reliability of electronic products.

    YES
  • Low Power Mode

    Low Power Mode is a feature found in electronic components, such as microcontrollers, processors, and devices, that allows them to operate at reduced power consumption levels. When activated, the component typically reduces its clock speed, voltage, or disables certain functions to conserve energy. This mode is often used to extend battery life in portable devices or reduce overall power consumption in energy-efficient systems. Low Power Mode can be triggered automatically based on certain conditions, such as low battery levels, or manually by the user or software. It is a crucial feature in modern electronics to balance performance with energy efficiency.

    YES
  • RAM (words)

    RAM (words) is a parameter used to describe the memory capacity of a random access memory (RAM) module in terms of the number of words it can store. In the context of electronic components, a word typically refers to the amount of data that can be processed or stored by the RAM module in a single operation. The RAM (words) specification indicates the total number of words that can be stored in the RAM module, with each word typically consisting of a fixed number of bits. This parameter is important for determining the overall memory capacity and performance of the RAM module in electronic devices.

    8192
  • Voltage - I/O

    Voltage - I/O is a parameter that refers to the voltage levels at the input and output pins of an electronic component, such as an integrated circuit or a semiconductor device. It specifies the range of voltages that the component can accept at its input pins and the voltages it will output at its output pins under normal operating conditions. This parameter is crucial for ensuring proper functionality and compatibility with other components in a circuit. It helps designers determine the appropriate voltage levels to use when interfacing with the component to prevent damage and ensure reliable operation.

    1.8V 3.3V
  • Number of UART Channels
    3
  • Barrel Shifter

    A barrel shifter is a digital circuit component commonly found in computer systems and microprocessors. It is used to shift binary data by a specified number of positions in a parallel manner. The term "barrel shifter" comes from the cylindrical shape of the circuit, which contains multiple shifters arranged in a circular pattern.Barrel shifters are efficient for shifting operations as they can perform shifts of multiple bits in a single clock cycle. They are often used in arithmetic and logic units (ALUs) for tasks such as multiplication, division, and bitwise operations. The flexibility and speed of barrel shifters make them essential for optimizing the performance of digital systems that require fast data manipulation.

    NO
  • Internal Bus Architecture

    The Internal Bus Architecture in electronic components refers to the design and layout of the internal communication pathways within the component. It determines how different parts of the component, such as the processor, memory, and peripherals, communicate with each other. The internal bus architecture includes the data bus, address bus, and control bus, which facilitate the transfer of data and instructions between different components. The efficiency and speed of data transfer within the component are influenced by the design and implementation of the internal bus architecture.

    MULTIPLE
  • Non-Volatile Memory

    Non-Volatile Memory refers to a type of storage technology that retains data even when power is turned off. It is essential for preserving important information in electronic devices, such as computers and smartphones. Common examples of non-volatile memory include Flash memory, EEPROM, and ROM. This characteristic makes non-volatile memory crucial for applications where data integrity and retention are required without a continuous power supply.

    External
  • Voltage - Core

    Voltage - Core is a parameter that refers to the voltage required to power the core of an electronic component, such as a microprocessor or a graphics processing unit (GPU). The core voltage is essential for the proper functioning of the component, as it provides the necessary power for the core to perform its operations. The voltage level is typically specified by the manufacturer and must be within a certain range to ensure the component operates reliably and efficiently. Monitoring and controlling the core voltage is crucial in maintaining the stability and performance of the electronic component.

    1.30V
  • On Chip Data RAM

    On Chip Data RAM refers to a type of memory that is integrated directly onto a microprocessor or other integrated circuit. This RAM is used for storing data temporarily while the device is in operation, allowing for quick access and retrieval of information. On Chip Data RAM is typically faster than external memory due to its proximity to the processor, which helps improve overall system performance. It is commonly used in various electronic components such as microcontrollers, CPUs, and DSPs to facilitate efficient data processing and manipulation.

    448kB
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Contains Lead
0 Similar Products Remaining

TMS320C6748BZCED4 Overview

In electronic terms, it is a type of component that comes in the package of type 361-LFBGA .Tray is the packaging method provided.Due to its Fixed/Floating Point membership, it is ideal for a wide range of applications.The mounting of the device is done in the direction of Surface Mount.As long as it is operated at the temperature of -40°C~90°C TJ, it will operate normally.1.8V 3.3V refers to the range of analog voltages that can be input or output.The TMS320C674x series includes this digital signal processor.361 terminations are available for its use.1.2V is the supply voltage.361 component pins are present.Its configuration includes 361 pins.With its base part number of 320C6748, many related parts can be identified.The device is specifically designed to operate at the frequency of 456MHz.This device requires a minimum voltage of 950mV.This device can handle a maximum voltage of 1.35V.Data format and transmission speed are configurable on 3 UART channels for asynchronous serial communication.

TMS320C6748BZCED4 Features

Supplied in the 361-LFBGA package

TMS320C6748BZCED4 Applications

There are a lot of Texas Instruments
TMS320C6748BZCED4 DSP applications.


  • Speech processing
  • Radar
  • Seismology
  • Audio
  • Sonar
  • Voice recognition
  • Financial signals
  • Other sensor array processing
  • Spectral density estimation
  • Statistical signal processing
The three parts on the right have similar specifications to Texas Instruments & TMS320C6748BZCED4.
TMS320C6748BZCED4 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "TMS320C6748BZCED4" in Texas Instruments TMS320C6748BZCED4.
  • Part Number
  • Manufacturer
  • Package
  • Description