Wakefield-Vette 423K
Wakefield-Vette 423K
feed

Wakefield-Vette 423K

Manufacturer No:

423K

Manufacturer:

Wakefield-Vette

Utmel No:

2686-423K

Package:

TO-3

ECAD Model:

Description:

WAKEFIELD SOLUTIONS 423-K. Heat Sink, Extruded Heat Sinks, High Power, TO-3, 0.95 C/W, 66.7 mm, 120.7 mm, 140.2 mm

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
423K information

Specifications
Documents & Media
Product Details
Product Comparison
Wakefield-Vette 423K technical specifications, attributes, parameters and parts with similar specifications to Wakefield-Vette 423K.
  • Type
    Parameter
  • Factory Lead Time
    10 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Press Fit, Stud
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-3
  • Material

    In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.

    Aluminum
  • Weight
    530.71g
  • Shape

    In electronic components, the parameter "Shape" refers to the physical form or outline of the component. It describes the external appearance of the component, including its dimensions, size, and overall structure. The shape of an electronic component can vary widely depending on its function and design requirements. Common shapes include rectangular, cylindrical, square, and circular, among others. The shape of a component is an important consideration in the design and layout of electronic circuits, as it can impact factors such as space utilization, heat dissipation, and ease of assembly.

    Rectangular, Fins
  • Package Cooled

    Package Cooled refers to a type of thermal management in electronic components where the device packaging is designed to dissipate heat efficiently. This involves integrating cooling features such as heat sinks or specialized materials that enhance heat transfer away from the component. The goal is to maintain optimal operating temperatures and improve reliability and performance of the electronic device. It is commonly used in high-power applications where excessive heat generation can affect functionality.

    TO-3, DO-5, Stud Mount
  • Material Finish

    Material Finish in electronic components refers to the surface treatment applied to the component to enhance its performance, durability, and reliability. The finish can protect the component from environmental factors such as moisture, corrosion, and mechanical stress. Common material finishes include gold plating, tin plating, silver plating, and organic coatings. The choice of material finish depends on the specific requirements of the application, such as conductivity, solderability, and cost-effectiveness. Proper material finish selection is crucial to ensure the long-term functionality and quality of electronic components.

    Black Anodized
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    423
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    Not Applicable
  • Type
    Board Level, Extrusion
  • Color
    Black
  • Power Rating

    The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.

    50W
  • Construction

    Construction in electronic components refers to the design and materials used in the manufacturing of the components. It encompasses the physical structure, arrangement, and integration of various parts like substrates, conductors, and insulators. The construction impacts the performance, reliability, and thermal properties of the component, influencing how it interacts with electrical signals and other components in a circuit. Different construction techniques can also affect the size, weight, and cost of the electronic component.

    EXTRUDED
  • Attachment Method

    The attachment method in electronic components refers to the technique used to connect a component to a circuit board or assembly. This can include methods such as soldering, bonding, or using connectors. The choice of attachment method can affect the reliability, performance, and manufacturability of the electronic device. Different methods may be suited for specific applications based on factors like mechanical stress, thermal conductivity, and ease of assembly.

    Press Fit
  • Height Off Base (Height of Fin)

    The parameter "Height Off Base (Height of Fin)" in electronic components refers to the distance between the base of the component and the top of any fins or protrusions on the component. This measurement is important for determining the overall dimensions and clearance requirements of the component within a circuit or system. It helps in ensuring proper fit and alignment of the component during installation and assembly. Manufacturers provide this specification to assist designers and engineers in selecting the appropriate components for their applications based on the available space and mechanical constraints.

    2.625 66.67mm
  • Thermal Resistance @ Forced Air Flow

    Thermal Resistance @ Forced Air Flow is a measure of how effectively an electronic component can dissipate heat when subjected to airflow. It quantifies the resistance to heat transfer from the component to the surrounding air in scenarios where forced ventilation is employed, such as with fans. This parameter is crucial for evaluating thermal performance, as it impacts the component's operating temperature and reliability under conditions of active cooling. Lower thermal resistance values indicate better heat dissipation capabilities, essential for maintaining optimal performance in high-power applications.

    0.50°C/W @ 250 LFM
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    50W
  • Thermal Resistance @ Natural

    Thermal Resistance @ Natural refers to the ability of an electronic component to dissipate heat under natural convection conditions without forced airflow. It is measured in degrees Celsius per watt and represents the temperature rise of the component above the ambient temperature for each watt of power dissipated. This parameter is crucial for understanding how effectively a component can manage heat during operation, ensuring reliability and performance. Manufacturers provide this value to help designers assess thermal management strategies in circuit designs.

    0.96°C/W
  • Power Dissipation @ Temperature Rise

    Power Dissipation at Temperature Rise refers to the maximum amount of power an electronic component, such as a semiconductor or resistor, can dissipate while maintaining a specified increase in temperature above its ambient environment. This parameter is crucial for ensuring the reliability and longevity of components, as excessive heat can lead to failure. It is typically expressed in watts and is determined by the thermal characteristics of the component and its cooling mechanisms. Proper management of power dissipation is essential for optimal performance in electronic circuits.

    50.0W @ 47°C
  • Height
    66.7mm
  • Length
    5.421 139.70mm
  • Width
    4.750 120.65mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

Product Description: Wakefield-Vette 423K Heat Sink

Description

The Wakefield-Vette 423K is a high-performance, board-level heat sink designed for efficient thermal management in electronic devices. Constructed from durable aluminum with a black anodized finish, this heat sink offers excellent thermal conductivity and reliability. Its press-fit and stud mount options provide versatile installation methods, making it suitable for a wide range of applications.

Features

  • Material and Finish: Made from high-quality aluminum with a black anodized finish for enhanced durability and aesthetic appeal.
  • Thermal Performance: Capable of dissipating up to 50W of power, with thermal resistances of 0.50°C/W at 250 LFM forced air flow and 0.96°C/W in natural convection.
  • Attachment Method: Available in press-fit and stud mount configurations for easy integration into various electronic systems.
  • Dimensions: Measuring 66.7mm in height, 5.421mm in length, and 4.750mm in width, with a height off base (height of fin) of 2.625mm.
  • Lead-Free and RoHS Compliant: Ensures compliance with environmental regulations, including lead-free status and ROHS3 compliance.
  • Packaging: Supplied in bulk packaging for convenient storage and handling.

Applications

  1. Primary Applications:
  2. High-power electronic components such as CPUs, GPUs, and power modules.
  3. Industrial control systems requiring efficient thermal management.
  4. Automotive electronics where reliability and performance are critical.

  5. Secondary Applications:

  6. Medical devices requiring precise temperature control.
  7. Telecommunication equipment needing robust thermal solutions.
  8. Aerospace applications where high reliability and low weight are essential.

Alternative Parts

If the Wakefield-Vette 423K is not available or meets specific requirements, alternative parts to consider include: - Wakefield-Vette 421K: A similar heat sink with slightly different dimensions but comparable thermal performance. - Other manufacturers' products such as the Thermalloy TLH-50W or the Cool-Pad CP-50W, which offer similar specifications but from different manufacturers.

Embedded Modules

The Wakefield-Vette 423K heat sink is commonly used in various embedded modules designed for thermal management in electronic systems: - CPU Coolers: Integrated into CPU coolers for efficient heat dissipation from central processing units. - Power Modules: Used in power modules to manage heat generated by high-power components. - Industrial Control Systems: Embedded in industrial control systems to maintain optimal operating temperatures under heavy loads.

The Wakefield-Vette 423K heat sink is an excellent choice for any application requiring robust thermal management capabilities while ensuring compliance with environmental regulations. Its versatility in attachment methods and high thermal performance make it an ideal component for a wide range of electronic systems.

The three parts on the right have similar specifications to Wakefield-Vette & 423K.
423K Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products