

Amphenol RF 901-9720
Manufacturer No:
901-9720
Tiny WHSLManufacturer:
Utmel No:
143-901-9720
Package:
SMA
Datasheet:
Description:
CONN ADAPT N JACK TO SMA JACK
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time9 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Flanges, Panel - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Panel Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
SMA - Mounting Feature
a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.
Flange - Dielectric Material
a substance that is a poor conductor of electricity, but an efficient supporter of electrostatic field s.
Polytetrafluoroethylene (PTFE) - Body Material
The parameter "Body Material" in electronic components refers to the material used to construct the physical body or casing of the component. This material plays a crucial role in determining the component's durability, thermal conductivity, electrical insulation properties, and resistance to environmental factors such as moisture, heat, and mechanical stress. Common body materials for electronic components include plastics, ceramics, metals, and composites. Selecting the appropriate body material is essential to ensure the reliable performance and longevity of the electronic component in various operating conditions.
Stainless Steel - Center Contact Plating
Center Contact Plating refers to the metal coating applied to the central contact of an electronic component, such as connectors or sockets. This plating is crucial for ensuring good electrical conductivity and minimizing resistance at the point of contact. It also provides protection against corrosion and wear, which can affect the component's performance over time. The choice of plating material, such as gold or nickel, can impact the durability and reliability of the connection.
Gold - Center Contact Material
The parameter "Center Contact Material" in electronic components refers to the material used for the central conductive part of connectors, such as RF connectors. This material is crucial for ensuring effective electrical conductivity and minimizing signal loss. Common materials include gold, silver, copper, and nickel, each offering different levels of conductivity, corrosion resistance, and mechanical properties. The choice of center contact material can significantly impact the performance and reliability of the connector in various applications.
Beryllium Copper - Contact MaterialsCopper
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-65°C~165°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Published2001
- JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e4 - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
Coaxial, SMA - Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Female - HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8536.69.80.00 - Fastening Type
There are 5 Main Types of Fastening Type: Screws, Nails, Bolts, Anchors, Rivets.
Threaded, Threaded - MIL Conformance
MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.
NO - DIN Conformance
DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.
NO - IEC Conformance
IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.
NO - Filter Feature
In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.
NO - OptionGENERAL PURPOSE
- Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
25.4mm - Style
In the context of electronic components, the parameter "Style" typically refers to the physical design or form factor of the component. This includes the shape, size, and layout of the component, as well as any specific features that distinguish it from other components. Different styles of components are often designed to fit specific applications or requirements, such as surface mount components for compact circuit board designs or through-hole components for more robust connections. Understanding the style of a component is important for selecting the right part for a particular electronic design and ensuring compatibility with other components and the overall system.
Straight - Frequency
In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.
7GHz - Reliability
Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.
COMMERCIAL - Plating
In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.
Passivated - Coupling Type
In electronic components, "Coupling Type" refers to the method by which two circuits or components are connected or linked together to transfer signals or energy. It describes the way in which the input of one component is connected to the output of another component. There are different types of coupling, such as capacitive coupling, inductive coupling, and transformer coupling, each with its own characteristics and applications. The choice of coupling type can affect the performance, efficiency, and stability of the overall electronic system. It is important to select the appropriate coupling type based on the specific requirements and constraints of the circuit design.
THREADED-THREADED - Impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
50Ohm - Mating Cycles
to the number of a times a physical connector can “mate” or connect to it's counterpart.
500 - Insulator Color
The parameter "Insulator Color" in electronic components refers to the color of the insulating material that surrounds or separates conductive elements within the component. The insulator is a non-conductive material that prevents electrical current from flowing between the conductive elements, ensuring proper functionality and safety of the component. The color of the insulator is often used for visual identification and organization of components in electronic circuits or systems. Different manufacturers may use various colors for insulators to distinguish between different types of components or to indicate specific characteristics such as voltage rating or temperature range.
NATURAL - Convert From (Adapter End)
The parameter "Convert From (Adapter End)" in electronic components refers to the specific input type or format that an adapter is designed to convert. It indicates the original signal or connection type that the adapter is capable of receiving. This could include various standards like HDMI, USB, or analog signals. Understanding this parameter is essential for ensuring compatibility between devices and the correct functioning of the overall electronic system.
SMA Jack, Female Socket - Convert To (Adapter End)
The parameter "Convert To (Adapter End)" in electronic components refers to the type of adapter or connector that is required to connect the component to another device or system. This parameter specifies the specific type of adapter or connector that is compatible with the component, allowing for seamless integration and communication between different parts of the electronic system. It is important to pay attention to this parameter when selecting electronic components to ensure proper compatibility and functionality within the overall system. Different components may require different types of adapters or connectors, so understanding the "Convert To (Adapter End)" parameter is crucial for successful integration and operation of electronic systems.
N Jack, Female Socket - VSWR
VSWR stands for Voltage Standing Wave Ratio, and it is a measure of how efficiently radio frequency (RF) power is transmitted from a source, such as a transmitter, to a load, such as an antenna, through a transmission line. It is a dimensionless ratio that compares the maximum voltage in a standing wave pattern to the minimum voltage in that pattern along the transmission line. A VSWR value of 1 indicates perfect impedance matching, meaning all the power is being efficiently transferred without any reflections. Higher VSWR values indicate a mismatch in impedance, which can lead to power loss, signal degradation, and potential damage to components. VSWR is an important parameter in RF systems to ensure optimal performance and signal integrity.
1.3 - Conversion Type
Type conversion (or typecasting) means transfer of data from one data type to another. Implicit conversion happens when the compiler automatically assigns data types, but the source code can also explicitly require a conversion to take place.
Between Series - Adapter Type
Adapter Type in electronic components refers to the classification or specification of an adapter used to connect different devices or interfaces. It indicates the design and functional characteristics that enable compatibility between components, such as power adapters, audio adapters, or network adapters. Each adapter type typically has distinct physical connectors, voltage levels, and signal protocols that facilitate seamless communication and power transfer in electronic systems.
Jack to Jack - Center GenderFemale to Female
- Adapter Series
Adapter Series in electronic components refers to a specific range or group of adapters that are designed to connect or interface between different devices or components. These adapters are typically used to convert one type of connector or interface to another, allowing for compatibility between devices that may have different connection types. The Adapter Series may include various models or versions tailored for specific applications or requirements, such as audio/video adapters, power adapters, or data communication adapters. Manufacturers often offer a range of Adapter Series products to cater to the diverse needs of users in various industries and applications.
SMA to N - Length31.2mm
- REACH SVHC
The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.
Unknown - Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
RoHS Compliant
ATMEGA8515L-8AU
Microchip TechnologyDSPIC30F6014A-30I/PF
Microchip TechnologyKSZ8895MQXIA
Microchip TechnologyXC6SLX45-2FGG484C
Xilinx Inc.ATMEGA32A-AU
Microchip TechnologyXC95144XL-10TQG144C
Xilinx Inc.NC7SZ125M5X
ON Semiconductor2N7002LT1G
ON SemiconductorUSB2514BI-AEZG
Microchip TechnologyTPS767D301PWPR
Texas Instruments