Microchip Technology SST39WF1602-70-4I-B3KE
Microchip Technology SST39WF1602-70-4I-B3KE
feed

Microchip Technology SST39WF1602-70-4I-B3KE

Memory IC SST39 MPF™ 10mA mA Memory IC

Manufacturer No:

SST39WF1602-70-4I-B3KE

Utmel No:

1610-SST39WF1602-70-4I-B3KE

Package:

48-TFBGA

ECAD Model:

Description:

Surface Mount SST39 MPF™ 48 Pin Memory IC SST39 MPF™ Series SST39WF1602 16 Mb kb 8mm mm 10mA mA 16b b

Quantity:

Unit Price: $2.931735

Ext Price: $2.93

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 27678

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $2.931735

    $2.93

  • 10

    $2.765788

    $27.66

  • 100

    $2.609234

    $260.92

  • 500

    $2.461541

    $1,230.77

  • 1000

    $2.322209

    $2,322.21

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
SST39WF1602-70-4I-B3KE information

Specifications
Documents & Media
Product Details
Product Comparison
Microchip Technology SST39WF1602-70-4I-B3KE technical specifications, attributes, parameters and parts with similar specifications to Microchip Technology SST39WF1602-70-4I-B3KE.
  • Type
    Parameter
  • Factory Lead Time
    7 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    48-TFBGA
  • Number of Pins
    48
  • Memory Types
    Non-Volatile
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tray
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    SST39 MPF™
  • Published
    2010
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e1
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    3 (168 Hours)
  • Number of Terminations
    48
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Tin/Silver/Copper (Sn/Ag/Cu)
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    TOP BOOT-BLOCK
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8542.32.00.51
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    1.65V~1.95V
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    BOTTOM
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    1.8V
  • Terminal Pitch

    The center distance from one pole to the next.

    0.8mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    40
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    SST39WF1602
  • Pin Count

    a count of all of the component leads (or pins)

    48
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    1.8V
  • Supply Voltage-Max (Vsup)

    The parameter "Supply Voltage-Max (Vsup)" in electronic components refers to the maximum voltage that can be safely applied to the component without causing damage. It is an important specification to consider when designing or using electronic circuits to ensure the component operates within its safe operating limits. Exceeding the maximum supply voltage can lead to overheating, component failure, or even permanent damage. It is crucial to adhere to the specified maximum supply voltage to ensure the reliable and safe operation of the electronic component.

    1.95V
  • Supply Voltage-Min (Vsup)

    The parameter "Supply Voltage-Min (Vsup)" in electronic components refers to the minimum voltage level required for the component to operate within its specified performance range. This parameter indicates the lowest voltage that can be safely applied to the component without risking damage or malfunction. It is crucial to ensure that the supply voltage provided to the component meets or exceeds this minimum value to ensure proper functionality and reliability. Failure to adhere to the specified minimum supply voltage may result in erratic behavior, reduced performance, or even permanent damage to the component.

    1.65V
  • Memory Size

    The memory capacity is the amount of data a device can store at any given time in its memory.

    16Mb 1M x 16
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    10mA
  • Access Time

    Access time in electronic components refers to the amount of time it takes for a system to retrieve data from memory or storage once a request has been made. It is typically measured in nanoseconds or microseconds and indicates the speed at which data can be accessed. Lower access time values signify faster performance, allowing for more efficient processing in computing systems. Access time is a critical parameter in determining the overall responsiveness of electronic devices, particularly in applications requiring quick data retrieval.

    70ns
  • Memory Format

    Memory Format in electronic components refers to the specific organization and structure of data storage within a memory device. It defines how data is stored, accessed, and managed within the memory module. Different memory formats include RAM (Random Access Memory), ROM (Read-Only Memory), and various types of flash memory. The memory format determines the speed, capacity, and functionality of the memory device, and it is crucial for compatibility with other components in a system. Understanding the memory format is essential for selecting the right memory module for a particular application or device.

    FLASH
  • Memory Interface

    An external memory interface is a bus protocol for communication from an integrated circuit, such as a microprocessor, to an external memory device located on a circuit board.

    Parallel
  • Data Bus Width

    The data bus width in electronic components refers to the number of bits that can be transferred simultaneously between the processor and memory. It determines the amount of data that can be processed and transferred in a single operation. A wider data bus allows for faster data transfer speeds and improved overall performance of the electronic device. Common data bus widths include 8-bit, 16-bit, 32-bit, and 64-bit, with higher numbers indicating a larger capacity for data transfer. The data bus width is an important specification to consider when evaluating the speed and efficiency of a computer system or other electronic device.

    16b
  • Organization

    In the context of electronic components, the parameter "Organization" typically refers to the arrangement or structure of the internal components within a device or system. It can describe how various elements such as transistors, resistors, capacitors, and other components are physically arranged and interconnected on a circuit board or within a semiconductor chip.The organization of electronic components plays a crucial role in determining the functionality, performance, and efficiency of a device. It can impact factors such as signal propagation, power consumption, thermal management, and overall system complexity. Engineers carefully design the organization of components to optimize the operation of electronic devices and ensure reliable performance.Different types of electronic components may have specific organizational requirements based on the intended application and design considerations. For example, integrated circuits may have a highly compact and intricate organization to maximize functionality within a small footprint, while larger electronic systems may have a more modular and distributed organization to facilitate maintenance and scalability.

    1MX16
  • Memory Width

    Memory width refers to the number of bits that can be read or written to memory at one time. It is an important specification in electronic components, particularly in memory devices like RAM and cache. A wider memory width allows for greater data throughput, enabling faster performance as more data can be processed simultaneously. Memory width can vary among different types of memory and can impact both the complexity and efficiency of data handling within electronic systems.

    16
  • Write Cycle Time - Word, Page

    Write Cycle Time - Word, Page refers to the duration required to write data to a specific memory cell or a page of memory in electronic components, particularly in non-volatile memories like Flash or EEPROM. It indicates the time taken to complete a writing operation for a single word or an entire page of data. This parameter is crucial for determining the performance and speed of memory devices in applications where quick data storage is essential. It impacts the overall efficiency in data handling, affecting both read and write speeds in memory-related operations.

    40μs
  • Address Bus Width

    A computer system has an address bus with 8 parallel lines. This means that the address bus width is 8 bits.

    20b
  • Density

    In electronic components, "Density" refers to the mass or weight of a material per unit volume. It is a physical property that indicates how tightly packed the atoms or molecules are within the material. The density of a component can affect its performance and characteristics, such as its strength, thermal conductivity, and electrical properties. Understanding the density of electronic components is important for designing and manufacturing processes to ensure optimal performance and reliability.

    16 Mb
  • Standby Current-Max

    Standby Current-Max refers to the maximum amount of current that an electronic component or device consumes while in a low-power standby mode. This parameter is critical for power management, especially in battery-operated devices, as it indicates how efficiently the device can conserve energy when not actively in use. A lower Standby Current-Max value is typically desirable, as it contributes to longer battery life and reduced energy consumption. Manufacturers specify this value to help engineers select components that meet specific power efficiency requirements in their designs.

    0.00004A
  • Sync/Async

    In the context of electronic components, the parameter "Sync/Async" refers to the synchronization mode of operation. Synchronous operation means that the component operates in coordination with an external clock signal. This ensures that data is transmitted or processed at specific intervals determined by the clock signal, allowing for precise timing and coordination between different components in a system.Asynchronous operation, on the other hand, means that the component does not rely on an external clock signal for its operation. Instead, it processes data at its own pace, which can lead to more flexibility but may also result in timing issues if not properly managed.The choice between synchronous and asynchronous operation depends on the specific requirements of the system and the desired level of coordination and timing precision.

    Asynchronous
  • Word Size

    Word "size" refers to the amount of data a CPU's internal data registers can hold and process at one time.

    16b
  • Data Polling

    Data Polling is a process used in electronic components to retrieve data at regular intervals from a sensor or device. It involves checking or querying the device for updated information, ensuring that the most current data is accessible for processing or analysis. This technique is commonly used in systems where continuous monitoring is necessary, allowing for timely responses based on the latest data collected. Data Polling can impact system performance, as it may introduce delays or consume resources depending on the polling frequency and the efficiency of the implemented protocol.

    YES
  • Toggle Bit

    The toggle bit is a control mechanism in electronic components that allows a circuit to switch between two states, typically representing binary values of 0 and 1. It is commonly used in digital systems to change the status of a device or memory cell each time it is activated. The toggle bit maintains its state until it receives a new signal that alters its value, making it essential for operations such as counters and flip-flops. This functionality enables efficient data storage, retrieval, and manipulation in various electronic applications.

    YES
  • Command User Interface

    The term "Command User Interface" in electronic components refers to the method by which a user interacts with a device or system through issuing commands. This interface allows users to input instructions or requests to control the operation of the electronic component. The Command User Interface can take various forms, such as physical buttons, touchscreens, voice commands, or software-based interfaces. It plays a crucial role in enabling users to interact with and utilize the functionalities of electronic components effectively. The design and implementation of a Command User Interface are essential considerations in ensuring user-friendly and intuitive operation of electronic devices.

    YES
  • Number of Sectors/Size
    512
  • Sector Size

    Sector size in electronic components refers to the minimum unit of data that can be read or written to the storage device, such as a hard drive or solid-state drive. It represents the smallest amount of data that can be accessed at a time within a storage device. The sector size is typically measured in bytes, with common sizes being 512 bytes or 4 kilobytes.Having a larger sector size can improve the efficiency of data storage and retrieval processes, as it reduces the overhead associated with accessing and managing smaller units of data. However, the choice of sector size can also impact the overall performance and compatibility of the storage device with different systems and applications. It is important to consider the sector size when configuring storage devices and optimizing data access speeds.

    2K
  • Boot Block

    The "Boot Block" in electronic components refers to a specific section of memory that is typically used in flash memory devices. It is a small portion of memory that contains essential code and data required for the device to boot up or initialize properly. The Boot Block is usually located at the beginning of the memory space and is designed to be read-only to ensure its integrity and prevent accidental corruption.During the boot-up process, the microcontroller or processor accesses the Boot Block to execute the initial instructions needed to start the device. This section often contains bootloader code, configuration settings, and other critical information necessary for the device to function correctly. By isolating this essential data in a dedicated Boot Block, manufacturers can ensure the reliability and security of the boot process in electronic components.

    TOP
  • Common Flash Interface

    Common Flash Interface is a standardized interface for accessing flash memory devices. It enables interoperability between different flash memory types and controllers, allowing for easier integration into various electronic systems. This parameter defines the electrical and protocol specifications needed for communication, facilitating faster data transfer and enhanced performance in applications such as embedded systems and consumer electronics.

    YES
  • Length
    8mm
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    1.2mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Microchip Technology SST39WF1602-70-4I-B3KE.

SST39WF1602-70-4I-B3KE Overview

It is available in a case with a Tray shape. As you can see, it is embedded in 48-TFBGA case. There is an 16Mb 1M x 16 memory capacity on the chip. In this device, the memory is of the FLASH-format, which is a popular format in the mainstream computing sector. Due to its extended operating temperature range, the device is well suited for a wide range of demanding applications. A voltage of 1.65V~1.95V is possible to be applied to the supply. There is a recommendation that Surface Mount mounting type should be used for this product. As you can see from the diagram, the chip is planted with 48 terminations. In total, 1 functions are supported by this part. The memory device designed for this application has been designed to be powered by an 1.8V power supply. To select similar parts, many people use the device's base part number SST39WF1602. It is encased in an 48-pin package that contains this ic memory chip. It has 48 pins indicating it has 48 memory locations. It is noted that the operating supply voltage of this memory is 1.8V. Chips such as this one are mounted using Surface Mount mounting, a straightforward method of mounting that is effective. Memory chip's nominal supply current is 10mA. While this memory chip features many merits, it also offers TOP BOOT-BLOCK for improving system performance. Among the SST39 MPF™ series of memory devices, this part is essential for its applications. The manufacturer has divided this memory into 512 different sections that have specific sizes in total.

SST39WF1602-70-4I-B3KE Features

Package / Case: 48-TFBGA
48 Pins
Operating Supply Voltage:1.8V
Additional Feature:TOP BOOT-BLOCK

SST39WF1602-70-4I-B3KE Applications

There are a lot of Microchip Technology
SST39WF1602-70-4I-B3KE Memory applications.


  • telecommunications
  • workstations,
  • DVD disk buffer
  • data buffer
  • nonvolatile BIOS memory
  • Camcorders
  • embedded logic
  • eDRAM
  • graphics card
  • hard disk drive (HDD)
The three parts on the right have similar specifications to Microchip Technology & SST39WF1602-70-4I-B3KE.
SST39WF1602-70-4I-B3KE Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "SST39WF1602-70-4I-B3KE" in Microchip Technology SST39WF1602-70-4I-B3KE.
  • Part Number
  • Manufacturer
  • Package
  • Description