

Samtec Inc. MW-50-03-G-D-245-065-A
Manufacturer No:
MW-50-03-G-D-245-065-A
Tiny WHSLManufacturer:
Utmel No:
2108-MW-50-03-G-D-245-065-A
Package:
-
Description:
Flex Stack, MW Series GENERAL PURPOSE BOARD STACKING CONNECTOR 2 Rows Solder 0.039 1.00mm Tube Surface Mount 100 Positions Black, Natural
Quantity:
Unit Price: $15.013246
Ext Price: $15.01
Delivery:





Payment:











In Stock : 9
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$15.013246
$15.01
10
$14.163440
$141.63
100
$13.361736
$1,336.17
500
$12.605411
$6,302.71
1000
$11.891897
$11,891.90
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time3 Weeks
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Contact MaterialsPHOSPHOR BRONZE
- Insulation MaterialsLIQUID CRYSTAL POLYMER (LCP)
- Operating Temperature (Min.)-55°C
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tube - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Flex Stack, MW - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e4 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Solder - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
BOARD STACKING CONNECTOR - Number of Positions100
- ColorBlack, Natural
- Number of Rows2
- Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Male - MIL Conformance
MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.
NO - DIN Conformance
DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.
NO - IEC Conformance
IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.
NO - Filter Feature
In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.
NO - Mixed Contacts
In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.
NO - OptionGENERAL PURPOSE
- Pitch
In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.
0.039 1.00mm - Total Number of Contacts100
- Number of ConductorsONE
- Reference Standard
In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.
UL - Reliability
Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.
COMMERCIAL - Number Of PCB Rows2
- PCB Contact Pattern
The "PCB Contact Pattern" refers to the layout or arrangement of contact points on a printed circuit board (PCB) where electronic components are mounted or connected. This pattern determines how components will be physically and electrically connected to the PCB. The contact pattern typically includes pads, vias, traces, and other features that facilitate the soldering or mounting of components onto the board. It is crucial for ensuring proper electrical connections and reliable performance of the electronic device. Designing an appropriate PCB contact pattern is essential for the functionality, efficiency, and durability of the electronic components and the overall circuitry.
RECTANGULAR - Contact Finish - Post (Mating)
Contact Finish - Post (Mating) is a parameter in electronic components that refers to the surface finish applied to the contact posts of a component that will come into contact with mating connectors or terminals. This finish is crucial for ensuring a reliable electrical connection between components. The contact finish is typically chosen based on factors such as conductivity, corrosion resistance, and compatibility with the mating connectors. Common contact finishes include gold, tin, silver, and nickel, each offering different advantages and characteristics. Choosing the appropriate contact finish is important to ensure optimal performance and longevity of the electronic component in its intended application.
Gold - Contact Style
The parameter "Contact Style" in electronic components refers to the specific design and arrangement of the contact points that enable electrical connection in various devices. It dictates how components interface with each other, affecting factors such as reliability, durability, and performance. Different contact styles can include configurations like pin, socket, blade, or surface mount, each designed to cater to specific applications and requirements in circuit assembly.
SQ PIN-SKT - Row Spacing
the space needed between rows to allow room for people or farm equipment to get through.
0.039 (1.00mm) - Contact Pattern
In electronic components, the "Contact Pattern" refers to the arrangement and design of the contact points on a component, such as a connector or a switch. The contact pattern determines how electrical connections are made between the component and other devices in a circuit. It includes the number, size, spacing, and configuration of the contact points, which can vary depending on the specific application and requirements of the component. A well-designed contact pattern is crucial for ensuring reliable and efficient electrical connections, as it affects factors such as signal integrity, power transmission, and durability of the component. Manufacturers carefully engineer contact patterns to meet the desired performance specifications and standards for the component's intended use.
RECTANGULAR - Plating Thickness
Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.
10μin - Length - Stack Height
Length - Stack Height refers to the total vertical dimension of a stacked electronic component or assembly. It measures the combined height of individual layers or elements, such as chips or modules, when they are assembled together. This parameter is crucial for ensuring proper fit within electronic enclosures and for assessing the impact on circuit board design and performance. Additionally, it plays a significant role in thermal management and overall system integration.
0.245 6.223mm - Length - Overall Pin
Length - Overall Pin refers to the total length of a pin on an electronic component, typically measured from the tip of the pin to its base where it connects to the component body. This dimension is crucial for ensuring proper fit into circuit boards or sockets, affecting both mechanical stability and electrical connectivity. Accurate measurement of the overall pin length is essential for designers to avoid issues such as shorting, misalignment, or difficulty in soldering during assembly.
0.310 7.874mm - Length - Post (Mating)
The parameter "Length - Post (Mating)" in electronic components refers to the length of the post or terminal on the component that is used for mating or connecting with another component or a circuit. This measurement is important for ensuring proper alignment and connection between components during assembly. The length of the post can impact the overall mechanical stability and electrical performance of the connection. It is typically specified in millimeters or inches and is a critical dimension to consider when designing and selecting electronic components for a specific application.
0.065 1.651mm - Contact Finish Thickness - Post (Mating)
The parameter "Contact Finish Thickness - Post (Mating)" in electronic components refers to the thickness of the contact finish on the post or terminal that is used for mating or connecting with another component or device. This measurement is important as it can impact the overall reliability and performance of the connection. A proper contact finish thickness ensures good electrical conductivity, mechanical strength, and resistance to wear and corrosion. Manufacturers specify this parameter to ensure compatibility and reliability in electronic assemblies and to meet industry standards for quality and performance.
10.0μin 0.25μm - Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant
DW-09-12-L-T-650
Samtec Inc.DW-11-20-L-D-780
Samtec Inc.EW-20-09-H-D-250
Samtec Inc.TW-17-04-T-D-276-140
Samtec Inc.FW-13-03-L-D-258-142-A
Samtec Inc.HW-08-08-G-D-250-SM-A-TR
Samtec Inc.FW-10-02-G-D-643-075
Samtec Inc.FW-10-05-G-D-570-100
Samtec Inc.FW-15-03-L-D-300-090-P-TR
Samtec Inc.EW-15-20-H-D-680
Samtec Inc.