

TE Connectivity Aerospace, Defense and Marine 277148-7
Manufacturer No:
277148-7
Tiny WHSLManufacturer:
Utmel No:
2460-277148-7
Package:
-
Datasheet:
Description:
Terminals TERM SLD COPALUM R
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Lifecycle Status
Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.
ACTIVE (Last Updated: 4 days ago) - Factory Lead Time4 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Free Hanging - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Free Hanging (In-Line) - Contact MaterialsCopper
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Copalum - Published2005
- Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Crimp - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Max Operating Temperature
The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
150°C - Min Operating Temperature
The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.
-55°C - HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8536.90.40.00 - Contact Finish
Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.
Tin - Wire Gauge
a measurement of?wire?diameter.?This determines the amount of electric current the wire can safely carry, as well as its electrical resistance and weight.
6 AWG (Al), 8 AWG (Cu) - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Compliant - Wire Gauge (Max)
Wire Gauge (Max) refers to the maximum size of wire that can be accommodated by a particular electronic component, such as a connector or terminal. It indicates the largest diameter of wire that can be securely connected to the component without causing damage or compromising the electrical connection. This parameter is important to consider when selecting components for a project to ensure compatibility with the wire sizes being used. Exceeding the maximum wire gauge could lead to poor connections, overheating, or other issues that may affect the performance and safety of the electronic system.
6 AWG - Wire Gauge (Min)
Wire Gauge (Min) refers to the minimum thickness or diameter of the wire that can be used with a particular electronic component or device. It is an important parameter to consider when designing or selecting components for a circuit, as using a wire that is too thin may not be able to handle the required current, leading to overheating or even failure. The Wire Gauge (Min) specification ensures that the wire used is capable of carrying the necessary current without causing any issues. It is typically specified in American Wire Gauge (AWG) or metric units, depending on the manufacturer or region.
8 AWG - Sealable
The parameter "Sealable" in electronic components refers to the ability of the component to be securely sealed or enclosed to protect it from environmental factors such as moisture, dust, and other contaminants. Components that are sealable are designed to prevent damage or malfunction caused by exposure to these external elements. This sealing can be achieved through various methods such as encapsulation, potting, or conformal coating. Ensuring that electronic components are sealable is important for maintaining their reliability and longevity in various operating conditions.
Yes - Terminal and Terminal Block Type
The parameter "Terminal and Terminal Block Type" in electronic components refers to the specification that describes the design and functionality of the connection points where electrical wires are attached. This includes various configurations such as screw terminals, spring terminals, push-in terminals, and barrier terminals. The type of terminal affects the ease of installation, reliability, and suitability for specific applications or environments. Additionally, the parameters often indicate the number of poles or connections that a terminal block can accommodate, which is crucial for organizing and managing electrical connections in circuits.
RING TERMINAL - Insulation Diameter
The parameter "Insulation Diameter" in electronic components refers to the measurement of the diameter of the insulation material surrounding a conductor or wire within the component. This measurement is crucial for ensuring proper insulation and protection of the conductor from external factors such as moisture, heat, and electrical interference. A sufficient insulation diameter helps prevent short circuits, electrical leakage, and other potential hazards in electronic circuits. Manufacturers specify insulation diameter requirements to meet safety standards and ensure the reliable performance of the electronic component in various applications.
0.225 ~ 0.250 (5.72mm ~ 6.35mm) - Insulation
Insulation in electronic components refers to the material properties that prevent the flow of electric current between conductive parts. It is critical for ensuring safety and reliability in circuits by minimizing unintended current paths. High insulation resistance helps protect against short circuits and enhances the durability of electronic devices by insulating high-voltage components from sensitive areas. Insulation can also affect signal integrity and can be a key factor in high-frequency applications.
Non-Insulated - Terminal Type
Terminal type or emulation specifies how your computer and the host computer to which you are connected exchange information.
Flat Sided, Tubular (Battery Lugs) - Wire/Cable Diameter
Wire/Cable Diameter refers to the measurement of the thickness of a wire or cable. This dimension is crucial as it influences the electrical resistance, current-carrying capacity, and overall performance of the component. A larger diameter typically allows for greater current flow and reduces resistance, while a smaller diameter can limit these attributes. The diameter is often specified in units such as millimeters or American Wire Gauge (AWG) numbers.
6.35 mm - Wire Cross Section
The wire cross section in electronic components refers to the area of the wire when viewed in a cross-sectional plane. It is an important parameter as it determines the current-carrying capacity and resistance of the wire. A larger wire cross section allows for more current to flow through without overheating, while a smaller cross section may limit the amount of current that can safely pass through. Proper consideration of wire cross section is crucial in designing electronic circuits to ensure efficient and safe operation.
8.8 mm2 - Stud/Tab Size
Stud/Tab Size is a parameter used to describe the physical dimensions of a stud or tab on an electronic component, such as a diode or transistor. This measurement typically refers to the diameter or width of the stud or tab, which is used for mounting or connecting the component to a circuit board or other components. The stud/tab size is important for ensuring proper fit and compatibility with other components or mounting hardware. Manufacturers provide specifications for stud/tab size to help users select the appropriate components for their specific application requirements.
1/4 Stud - Heavy Duty
In the context of electronic components, the term "Heavy Duty" typically refers to components or devices that are designed to withstand higher levels of stress, such as higher voltage, current, or temperature, compared to standard components. These heavy-duty components are built with robust materials and construction techniques to ensure durability and reliability in demanding applications.Heavy-duty electronic components are often used in industrial, automotive, aerospace, and other harsh environments where standard components may not be able to meet the performance requirements. They are designed to operate efficiently and safely under extreme conditions, providing a higher level of performance and longevity.Overall, heavy-duty electronic components offer enhanced capabilities and resilience, making them suitable for applications that require ruggedness, high performance, and extended operational lifetimes. It is important to carefully consider the specific requirements of your project and select the appropriate heavy-duty components to ensure optimal performance and reliability.
No - Terminal GenderFEMALE
- Stud Diameter
Stud diameter refers to the measurement of the width of a cylindrical protrusion or stud on an electronic component. It is a crucial parameter that affects the component's mechanical stability and electrical connectivity, particularly in applications where components are mounted using screws or bolts. The stud diameter must be compatible with the corresponding mounting hardware to ensure secure and reliable attachment within electronic systems. Proper selection of stud diameter also contributes to thermal and electrical performance by ensuring adequate contact area for heat dissipation and conductivity.
6.731 mm - Number of Holes1
- Length46.74mm
- Thickness
Thickness in electronic components refers to the measurement of how thick a particular material or layer is within the component structure. It can pertain to various aspects, such as the thickness of a substrate, a dielectric layer, or conductive traces. This parameter is crucial as it impacts the electrical, mechanical, and thermal properties of the component, influencing its performance and reliability in electronic circuits.
0.088 2.24mm - Length - Overall
Length - Overall is a crucial parameter in electronic components that refers to the total length of a component from one end to the other. It encompasses any protruding features or attachments, providing a complete measurement of the component's size. This dimension is essential for determining compatibility with circuit boards, housing, and other components in an assembly. Accurate knowledge of the overall length helps ensure proper fit and function in electronic designs.
1.900 48.26mm - Diameter - Inside
The parameter "Diameter - Inside" in electronic components refers to the measurement of the inner diameter of a component, such as a connector, socket, or housing. This measurement is crucial for ensuring proper fit and compatibility with other components or devices. It helps determine the size of the opening or cavity within the component where other parts or components will be inserted or connected. Understanding the "Diameter - Inside" specification is important for selecting the right components for a specific application and ensuring seamless integration within an electronic system.
7.112 mm - Width - Outer Edges
Width - Outer Edges is a parameter used to describe the physical dimensions of an electronic component, specifically referring to the measurement of the outer edges of the component. This parameter typically indicates the distance between the outermost points of the component, providing important information for designing and fitting the component into a circuit or system. Understanding the width of the outer edges is crucial for ensuring proper alignment and spacing within the overall electronic assembly. Manufacturers often provide this specification in datasheets to help engineers and designers accurately incorporate the component into their projects.
0.627 15.92mm - Tongue Thickness
Tongue Thickness is a term commonly used in the context of electrical connectors and terminals. It refers to the thickness of the metal portion that is designed to make contact with another component or conductor. The tongue thickness is an important parameter as it determines the amount of pressure and surface area that will be in contact when the connector is mated with another component. A thicker tongue can provide better conductivity and mechanical strength, while a thinner tongue may offer more flexibility and easier insertion. Manufacturers specify the tongue thickness in their product datasheets to ensure proper mating and performance of the connector in a given application.
2.26mm - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
RoHS Compliant - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Not Applicable
TCC1210X7T226K250MT
CCTCTCC1210X6S271M251FT
CCTCTCC0603X7S105K500CT
CCTCLTM2882IY-3#PBF
Analog Devices / Linear TechnologyD48B-SF-1L-PG29
DEGSONTCC1210X7S222M250FT
CCTCLTM4644IY#PBF
Analog Devices / Linear TechnologyLT3845IFE#PBF
Analog Devices / Linear TechnologyLT3439EFE#PBF
Analog Devices / Linear Technology44050-0003
Molex