Reflection Attenuator Calculator

This reflection attenuator calculator is designed to help in calculating the correct values of the resistor R1 in a reflection attenuator.

Reflection Attenuator Calculator

ATTENUATION (DB)
DB
IMPEDANCE
Ω
R1 > Z0
Ω
R1 < Z0
Ω

FORMULAS

reflection-attenuator-formula-update
reflection-attenuator-chart
Introduction

Overview

The reflection attenuator calculator allows you to determine the two possible resistor values (R1 > Z0 & R1 < Z0) for a reflection attenuator (measured in Ohms). A reflection attenuators use two equal resistors, each grounded and connected to the same node, to attenuate a signal. For this reason, there are two possible solutions to the value of the resistors used, one larger than the system impedance and one smaller.

reflection attenuator calculator.png


Formulas

there are two formulas for R1: one where R1 is greater than the characteristic impedance of the line to be match and another where R1 is lesser than that characteristic impedance. 

equation.png

Applications

Attenuators are passive circuits that are used to weaken the signal from a source to a level suitable for the destination. The source can be a transmitter circuit or a transmission line and the destination may be another transmission line or an antenna. Attenuators in RF applications are usually just a simple network of resistors.  

Reflection attenuators have two or more discrete states (digital) and are most often they are used as variable phase shifters. Depending on the type of coupler used, such an attenuator can provide an octave bandwidth. In fact, reflection attenuators can provide an invariant response with careful design. 

Frequently Asked Questions

1.How does attenuator work?

As signal at the input of the attenuator will experience a 3 dB reduction in power by the time it reaches the load. That 3 dB less power will be 100% reflected by the load and experience another 3 dB reduction in power by the time is returns back to the input, for a total loss of 6 dB.

2.How do you calculate reflection attachment?

Enter Attenuation and Zo to solve for R1 and R2. R1 = Zo * ((10 ^ (dB / 20) - 1) / (10 ^ (dB / 20) + 1)) for R1 < Zo. R1 = Zo * ((10 ^ (dB / 20) + 1) / (10 ^ (dB / 20) - 1)) for R1 > Zo.

3.How do you calculate attenuator loss?

Enter values for R1 and R2 to calculate attenuator loss and impedance. Alternatively, generate R1 and R2 for a wanted attenuation. *Strictly, a loss quantity when expressed in dB should be positive. However, convention and some literature quote return loss as a negative value akin to an S (1,1) measurement on a Network analyser.

4.What is the formula for attenuator resistance?

The power level at various points in the RF circuit is chosen based on the 1dB compression points of the devices in transmit or receive chain. The most popular values of PI attenuator pads are 3dB and 6dB. Following equation or formula is used for PI attenuator resistance values calculation.

5.What are the functions of attenuator?

An attenuator is an electronic device that reduces the power of a signal without appreciably distorting its waveform. An attenuator is effectively the opposite of an amplifier, though the two work by different methods. While an amplifier provides gain, an attenuator provides loss, or gain less than 1.

6.How to find the emf of an attenuator?

After selecting preferred values, simple series and parallel resistor calculations are used to find the attenuator input impedance, input voltage and output voltage. The source EMF is again assumed to be 2 Volts.

7.What is a 3 dB attenuator?

Insert a 3 dB attenuator in front of the load. Now the incident signal is referenced to the input of the attenuator. As signal at the input of the attenuator will experience a 3 dB reduction in power by the time it reaches the load.

8.Does an attenuator affect the tone?

Yep, attenuators do affect the tone. While I don't have an attenuator, I have played amps that have had built-in attenuators. If you didn't adjust the controls after engaging the attenuators, the amps (even the overpriced THD Univalve) sounded muddy.

9.What is the best attenuator?

Best Guitar Amp Attenuators Comparison Table: S.No. Model Ratings #1 Weber Mass III 4.8 #2 Rivera RockCrusher 5.0 #3 Panama Guitars Conqueror 4.5 #4 THD Electronics HP8 4.1 1 more rows.

10. What are the different types of attenuators?

There are essentially six different kinds of RF designs: fixed, step, continuously variable, programmable, dc bias and dc blocking. Key specifications of an attenuator to consider include the attenuation measured in decibels (dB), frequency range (MHz), power handling (W), and impedance (Ohms).
Hot products

ImagePart NumberManufacturerCategoryPackage/CaseDescriptionPriceQuantityBuy/Quote
BLM18PG121SN1DBLM18PG121SN1DMurata ElectronicsFerrite Beads and Chips0603 (1608 Metric)MURATA - BLM18PG121SN1D - Ferrite Bead, 0603 [1608 Metric], 120 ohm, 2 A, BLM18P Series, 0.05 ohm, &#177; 25%-

In stock : 355131

Minimum: 1

AD9364BBCZAD9364BBCZAnalog Devices Inc.RF Transceiver ICs144-LFBGA, CSPBGARF Transceiver 1.3V 144-Pin CSP-BGA Tray-

In stock

Minimum: 1

CY62256LL-70SNXCCY62256LL-70SNXCCypress Semiconductor CorpMemory28-SOIC (0.295, 7.50mm Width)IC SRAM 256K PARALLEL 28SOIC-

In stock : 305

Minimum: 1

M24C16-MN6M24C16-MN6STMicroelectronicsMemory8-SOIC (0.154, 3.90mm Width)IC EEPROM 16K I2C 400KHZ 8SO-

In stock : 43

Minimum: 1

MPZ2012S102AT000MPZ2012S102AT000TDK CorporationFerrite Beads and Chips0805 (2012 Metric)TDK - MPZ2012S102AT000 - FERRITE BEAD, 0.15OHM, 1.5A, 0805-

In stock : 51745

Minimum: 1

SE2537L-RSE2537L-RSkyworks Solutions Inc.RF Amplifiers16-VFQFN Exposed PadRF Amplifier 5GHz Gain 30 dB 3.3Volt -10C 85C-

In stock : 4525

Minimum: 1

CYBL10162-56LQXICYBL10162-56LQXICypress Semiconductor CorpRF Transceiver ICs56-UFQFN Exposed PadMCU 32-Bit CYBL10X6X ARM Cortex M0 RISC 128KB Flash 1.8V/2.5V/3.3V/5V 56-Pin QFN EP Tray-

In stock : 48

Minimum: 1

SKY81294-14-001SKY81294-14-001Skyworks Solutions Inc.PMIC - LED Drivers9-BGA, WLCSPIC LED FLASH DVR 1.2V 9CSP
  • 1:$0.461837
  • 10:$0.435695
  • 100:$0.411033
  • 500:$0.387767

In stock : 1786

Minimum: 1

HSMS-282P-TR1GHSMS-282P-TR1GBroadcom LimitedDiodes - RF6-TSSOP, SC-88, SOT-363Diode Schottky 15V 6-Pin SOT-363 T/R-

In stock

Minimum: 1

IS61LV12816L-8TLIS61LV12816L-8TLISSI, Integrated Silicon Solution IncMemory44-TSOP (0.400, 10.16mm Width)SRAM Chip Async Single 3.3V 2M-bit 128K x 16 8ns 44-Pin TSOP-II-

In stock : 15

Minimum: 1

AT25DF161-SH-TAT25DF161-SH-TAdesto TechnologiesMemory8-SOIC (0.209, 5.30mm Width)Flash Memory 16M, 2.7V, 100Mhz Serial Flash-

In stock

Minimum: 1

80HCPS1432CRM80HCPS1432CRMRenesas Electronics America Inc.Specialized ICs576-BBGA, FCBGAIC SER RAPIDIO SWITCH 576FCBGA-

In stock

Minimum: 1

SZNUP3105LT1GSZNUP3105LT1GON SemiconductorTVS - DiodesTO-236-3, SC-59, SOT-23-3TVS DIODE 32V 66V SOT23-3-

In stock : 1000

Minimum: 1

DS1230AB-200INDDS1230AB-200INDMaxim IntegratedMemory28-DIP Module (0.600, 15.24mm)IC NVSRAM 256K PARALLEL 28EDIP-

In stock

Minimum: 1

STK17TA8-RF45ISTK17TA8-RF45ICypress Semiconductor CorpMemory48-BSSOP (0.295, 7.50mm Width)IC NVSRAM 1M PARALLEL 48SSOP-

In stock

Minimum: 1

ALT6702RM45Q7ALT6702RM45Q7Skyworks Solutions Inc.RF Amplifiers-IC RF AMP CELLULAR SMD-

In stock

Minimum: 1

SI8261BBD-C-ISSI8261BBD-C-ISSilicon LabsIsolators - Gate Drivers6-SOIC (0.295, 7.50mm Width)4A Gate Driver Capacitive Coupling 5000Vrms 1 Channel 6-SDIP
  • 1:$7.632504
  • 10:$7.200475
  • 100:$6.792901
  • 500:$6.408398

In stock : 28210

Minimum: 1

SI8261BAD-C-ISSI8261BAD-C-ISSilicon LabsIsolators - Gate Drivers6-SOIC (0.295, 7.50mm Width)Gate Drivers 5kV Opto input Sgl channel 4.0A driver
  • 1:$4.582117
  • 10:$4.322752
  • 100:$4.078068
  • 500:$3.847234

In stock : 23

Minimum: 1

CSR8510A06-ICXR-RCSR8510A06-ICXR-RQualcommRF Transceiver ICs6-XFBGAIC RF TXRX BLUETOOTH 6XFBGA-

In stock

Minimum: 1

SZNUP4114UCLW1T2GSZNUP4114UCLW1T2GON SemiconductorTVS - Diodes6-TSSOP, SC-88, SOT-363TVS DIODE 5.5V 10V SC88
  • 1:$0.241637
  • 10:$0.227959
  • 100:$0.215056
  • 500:$0.202883

In stock : 66000

Minimum: 1