Nexperia USA Inc. BAS70XY,115
Nexperia USA Inc. BAS70XY,115
feed

Nexperia USA Inc. BAS70XY,115

Manufacturer No:

BAS70XY,115

Manufacturer:

Nexperia USA Inc.

Utmel No:

1729-BAS70XY,115

Package:

6-TSSOP, SC-88, SOT-363

ECAD Model:

Description:

Schottky Rectifier Diode 2 Pair Series Connection Small Signal =< 200mA (Io), Any Speed 150°C Max 70mA 70V-DC 6-TSSOP, SC-88, SOT-363 Surface Mount

Quantity:

Unit Price: $0.146749

Ext Price: $0.15

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 43229

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.146749

    $0.15

  • 10

    $0.138442

    $1.38

  • 100

    $0.130606

    $13.06

  • 500

    $0.123213

    $61.61

  • 1000

    $0.116239

    $116.24

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
BAS70XY,115 information

Specifications
Documents & Media
Product Details
Nexperia USA Inc. BAS70XY,115 technical specifications, attributes, parameters and parts with similar specifications to Nexperia USA Inc. BAS70XY,115.
  • Type
    Parameter
  • Factory Lead Time
    4 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    6-TSSOP, SC-88, SOT-363
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Number of Pins
    6
  • Diode Element Material

    The parameter "Diode Element Material" refers to the specific semiconductor material used in the construction of a diode. This material determines the electrical characteristics and performance of the diode, including its forward voltage drop, reverse breakdown voltage, and switching speed. Common diode element materials include silicon, germanium, and gallium arsenide, each offering different advantages for various applications. The choice of material impacts the diode's efficiency, thermal stability, and overall suitability for specific electronic circuits.

    SILICON
  • Number of Elements
    4
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    6
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    150°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -65°C
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8541.10.00.70
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    40
  • Pin Count

    a count of all of the component leads (or pins)

    6
  • Speed

    In electronic components, "Speed" typically refers to the rate at which data can be processed or transferred within the component. It is a measure of how quickly the component can perform its functions, such as executing instructions or transmitting signals. Speed is often specified in terms of frequency, such as clock speed in processors or data transfer rate in memory modules. Higher speed components can perform tasks more quickly, leading to improved overall performance in electronic devices. It is an important parameter to consider when designing or selecting electronic components for specific applications.

    Small Signal =< 200mA (Io), Any Speed
  • Diode Type

    In electronic components, the parameter "Diode Type" refers to the specific type or configuration of a diode, which is a semiconductor device that allows current to flow in one direction only. There are various types of diodes, each designed for specific applications and functions. Common diode types include rectifier diodes, zener diodes, light-emitting diodes (LEDs), and Schottky diodes, among others. The diode type determines the diode's characteristics, such as forward voltage drop, reverse breakdown voltage, and maximum current rating, making it crucial for selecting the right diode for a particular circuit or application. Understanding the diode type is essential for ensuring proper functionality and performance in electronic circuits.

    Schottky
  • Current - Reverse Leakage @ Vr

    Current - Reverse Leakage @ Vr is a parameter that describes the amount of current that flows in the reverse direction through a diode or other semiconductor component when a reverse voltage (Vr) is applied across it. This leakage current is typically very small, but it is important to consider in electronic circuits as it can affect the overall performance and reliability of the component. The reverse leakage current is influenced by factors such as the material properties of the semiconductor, temperature, and the magnitude of the reverse voltage applied. Manufacturers provide this parameter in datasheets to help engineers and designers understand the behavior of the component in reverse bias conditions.

    10μA @ 70V
  • Voltage - Forward (Vf) (Max) @ If

    The parameter "Voltage - Forward (Vf) (Max) @ If" refers to the maximum voltage drop across a diode when it is forward-biased and conducting a specified forward current (If). It indicates the maximum potential difference the diode can withstand while allowing current to flow in the forward direction without breaking down. This value is crucial for designing circuits as it helps determine how much voltage will be lost across the diode during operation. Higher Vf values can lead to reduced efficiency in power applications, making this parameter essential for optimizing circuit performance.

    1V @ 15mA
  • Case Connection

    Case Connection refers to the method by which an electronic component's case or housing is connected to the electrical circuit. This connection is important for grounding purposes, mechanical stability, and heat dissipation. The case connection can vary depending on the type of component and its intended application. It is crucial to ensure a secure and reliable case connection to maintain the overall performance and safety of the electronic device.

    CATHODE
  • Forward Current

    Current which flows upon application of forward voltage.

    70mA
  • Max Reverse Leakage Current

    Max Reverse Leakage Current refers to the maximum amount of current that can flow through a semiconductor device, such as a diode or transistor, when it is reverse biased. This current is an important parameter as it indicates the level of unintended current that can flow when the device is not conducting in the forward direction. High values of reverse leakage current can lead to power loss, reduced efficiency, and may affect the performance and reliability of electronic circuits. It is particularly critical in applications where precise current control and low power consumption are necessary.

    10μA
  • Operating Temperature - Junction

    Operating Temperature - Junction refers to the maximum temperature at which the junction of an electronic component can safely operate without causing damage or performance degradation. This parameter is crucial for determining the reliability and longevity of the component, as excessive heat can lead to thermal stress and failure. Manufacturers specify the operating temperature range to ensure that the component functions within safe limits under normal operating conditions. It is important for designers and engineers to consider the operating temperature - junction when selecting and using electronic components to prevent overheating and ensure optimal performance.

    150°C Max
  • Max Surge Current

    Surge current is a peak non repetitive current. Maximum (peak or surge) forward current = IFSM or if(surge), the maximum peak amount of current the diode is able to conduct in forward bias mode.

    100mA
  • Output Current-Max

    Output Current-Max is a parameter in electronic components that specifies the maximum amount of current that can be safely drawn from the output of the component without causing damage. It is an important specification to consider when designing circuits to ensure that the component can handle the required current without overheating or failing. Exceeding the maximum output current can lead to performance issues, component damage, or even complete failure of the circuit. It is crucial to adhere to the specified maximum output current to ensure the reliable operation of the electronic component and the overall circuit.

    0.07A
  • Current - Average Rectified (Io)

    The parameter "Current - Average Rectified (Io)" in electronic components refers to the average value of the rectified current flowing through the component. This parameter is important in determining the average power dissipation and thermal considerations of the component. It is typically specified in datasheets for diodes, rectifiers, and other components that handle alternating current (AC) and convert it to direct current (DC). Understanding the average rectified current helps in selecting the appropriate component for a given application to ensure reliable operation and prevent overheating.

    70mA DC
  • Forward Voltage

    the amount of voltage needed to get current to flow across a diode.

    1V
  • Max Reverse Voltage (DC)

    Max Reverse Voltage (DC) refers to the maximum voltage that a semiconductor device, such as a diode, can withstand in the reverse bias direction without failing. Exceeding this voltage can lead to breakdown and potential damage to the component. It is a critical parameter in circuit design to ensure reliability and prevent failure when the device is subjected to reverse voltage conditions.

    70V
  • Average Rectified Current

    Mainly used to characterize alternating voltage and current. It can be computed by averaging the absolute value of a waveform over one full period of the waveform.

    70mA
  • Peak Reverse Current

    The maximum voltage that a diode can withstand in the reverse direction without breaking down or avalanching.If this voltage is exceeded the diode may be destroyed. Diodes must have a peak inverse voltage rating that is higher than the maximum voltage that will be applied to them in a given application.

    10μA
  • Max Repetitive Reverse Voltage (Vrrm)

    The Max Repetitive Reverse Voltage (Vrrm) is a crucial parameter in electronic components, particularly in diodes and transistors. It refers to the maximum voltage that can be applied across the component in the reverse direction without causing damage. This parameter is important for ensuring the proper functioning and longevity of the component in circuits where reverse voltage may be present. Exceeding the Vrrm rating can lead to breakdown and failure of the component, so it is essential to carefully consider this specification when designing or selecting components for a circuit.

    70V
  • Peak Non-Repetitive Surge Current

    Peak Non-Repetitive Surge Current is a specification in electronic components that refers to the maximum current that the component can withstand for a short duration without sustaining damage. This surge current typically occurs as a result of sudden voltage spikes or transient events in the circuit. It is important to consider this parameter when designing or selecting components to ensure they can handle occasional high-current surges without failing. The value of Peak Non-Repetitive Surge Current is usually specified in amperes and is crucial for protecting the component and maintaining the overall reliability of the circuit.

    100mA
  • Diode Configuration

    Diode configuration refers to the specific arrangement and connection of diodes within an electronic circuit. It can determine how the diode functions, whether as a rectifier, switch, or voltage regulator. Common configurations include series, parallel, and bridge configurations, each with distinct characteristics affecting the flow of current and voltage in the circuit. Proper diode configuration is essential for achieving desired circuit behaviors and performance.

    2 Pair Series Connection
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Nexperia USA Inc. BAS70XY,115.

Product Description

Description

The BAS70XY,115 from Nexperia USA Inc. is a high-performance Schottky diode designed for surface mount applications. This diode is part of the discrete semiconductor products category and specifically falls under the subcategory of diodes, rectifiers, and arrays. It features a 2-pair series connection, making it suitable for various electronic circuits requiring efficient rectification and switching capabilities.

Features

  • Average Rectified Current: The BAS70XY,115 can handle an average rectified current of 70mA DC.
  • Low Forward Voltage: With a forward voltage of just 1V, this diode offers excellent efficiency in rectification applications.
  • High Surge Current Capability: It can withstand peak non-repetitive surge currents up to 100mA.
  • Low Reverse Leakage Current: The reverse leakage current is as low as 10μA at 70V, ensuring minimal power loss in reverse bias conditions.
  • Lead-Free and RoHS Compliant: The diode is lead-free and compliant with ROHS3 standards, making it environmentally friendly.
  • Surface Mount Technology: Designed for surface mount applications with a 6-TSSOP package (SC-88, SOT-363), it facilitates easy integration into modern electronic devices.

Applications

  1. Primary Applications
  2. Rectification in Power Supplies: The BAS70XY,115 is ideal for use in power supply circuits where efficient rectification is crucial.
  3. Switching Circuits: Its low forward voltage drop and high surge current capability make it suitable for switching applications.
  4. Audio Equipment: Used in audio equipment for efficient rectification and minimal signal loss.

  5. Secondary Applications

  6. Telecommunications Equipment: Can be used in telecommunications equipment for reliable rectification and switching functions.
  7. Automotive Electronics: Suitable for automotive electronics where high reliability and low power loss are essential.
  8. Medical Devices: Used in medical devices requiring precise control over electrical signals.

Alternative Parts

If the BAS70XY,115 is not available or if you need an alternative solution, consider the following parts: - BAS16S: Another Schottky diode from Nexperia with similar characteristics but slightly different specifications. - 1N5817: A Schottky diode from ON Semiconductor with comparable performance but different packaging options.

Embedded Modules

The BAS70XY,115 is commonly used in various embedded modules such as: - Power Supply Modules: Integrated into power supply modules for efficient rectification. - Switching Regulator Modules: Used in switching regulator modules for reliable switching operations. - Audio Amplifier Modules: Embedded in audio amplifier modules to minimize signal loss during rectification.

In summary, the BAS70XY,115 is a versatile Schottky diode designed for efficient rectification and switching applications. Its low forward voltage drop, high surge current capability, and lead-free construction make it an excellent choice for a wide range of electronic devices.

BAS70XY,115 Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "BAS70XY,115" in Nexperia USA Inc. BAS70XY,115.
  • Part Number
  • Manufacturer
  • Package
  • Description