Nexperia USA Inc. PMEG4005AESFYL
Nexperia USA Inc. PMEG4005AESFYL
feed

Nexperia USA Inc. PMEG4005AESFYL

Manufacturer No:

PMEG4005AESFYL

Manufacturer:

Nexperia USA Inc.

Utmel No:

1729-PMEG4005AESFYL

Package:

0201 (0603 Metric)

Datasheet:

PMEG4005AESF

ECAD Model:

Description:

Schottky Diode Rectifier Fast Recovery =< 500ns, > 200mA (Io) 820mV @ 500mA 150°C Max 80μA @ 40V 2-Termination Cut Tape (CT) 0201 (0603 Metric) Surface Mount

Quantity:

Unit Price: $0.095284

Ext Price: $0.10

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 599

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.095284

    $0.10

  • 500

    $0.070062

    $35.03

  • 1000

    $0.058385

    $58.38

  • 2000

    $0.053564

    $107.13

  • 5000

    $0.050060

    $250.30

  • 10000

    $0.046567

    $465.67

  • 15000

    $0.045036

    $675.54

  • 50000

    $0.044283

    $2,214.15

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
PMEG4005AESFYL information

Specifications
Documents & Media
Product Details
Product Comparison
Nexperia USA Inc. PMEG4005AESFYL technical specifications, attributes, parameters and parts with similar specifications to Nexperia USA Inc. PMEG4005AESFYL.
  • Type
    Parameter
  • Factory Lead Time
    8 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    0201 (0603 Metric)
  • Number of Pins
    2
  • Diode Element Material

    The parameter "Diode Element Material" refers to the specific semiconductor material used in the construction of a diode. This material determines the electrical characteristics and performance of the diode, including its forward voltage drop, reverse breakdown voltage, and switching speed. Common diode element materials include silicon, germanium, and gallium arsenide, each offering different advantages for various applications. The choice of material impacts the diode's efficiency, thermal stability, and overall suitability for specific electronic circuits.

    SILICON
  • Number of Elements
    1
  • Operating Temperature (Max.)
    150°C
  • Power Dissipation (Max)
    0.405W
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Cut Tape (CT)
  • Published
    2016
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    2
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    BOTTOM
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    NO LEAD
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Pin Count

    a count of all of the component leads (or pins)

    2
  • Reference Standard

    In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.

    IEC-60134
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE
  • Speed

    In electronic components, "Speed" typically refers to the rate at which data can be processed or transferred within the component. It is a measure of how quickly the component can perform its functions, such as executing instructions or transmitting signals. Speed is often specified in terms of frequency, such as clock speed in processors or data transfer rate in memory modules. Higher speed components can perform tasks more quickly, leading to improved overall performance in electronic devices. It is an important parameter to consider when designing or selecting electronic components for specific applications.

    Fast Recovery =< 500ns, > 200mA (Io)
  • Diode Type

    In electronic components, the parameter "Diode Type" refers to the specific type or configuration of a diode, which is a semiconductor device that allows current to flow in one direction only. There are various types of diodes, each designed for specific applications and functions. Common diode types include rectifier diodes, zener diodes, light-emitting diodes (LEDs), and Schottky diodes, among others. The diode type determines the diode's characteristics, such as forward voltage drop, reverse breakdown voltage, and maximum current rating, making it crucial for selecting the right diode for a particular circuit or application. Understanding the diode type is essential for ensuring proper functionality and performance in electronic circuits.

    Schottky
  • Current - Reverse Leakage @ Vr

    Current - Reverse Leakage @ Vr is a parameter that describes the amount of current that flows in the reverse direction through a diode or other semiconductor component when a reverse voltage (Vr) is applied across it. This leakage current is typically very small, but it is important to consider in electronic circuits as it can affect the overall performance and reliability of the component. The reverse leakage current is influenced by factors such as the material properties of the semiconductor, temperature, and the magnitude of the reverse voltage applied. Manufacturers provide this parameter in datasheets to help engineers and designers understand the behavior of the component in reverse bias conditions.

    80μA @ 40V
  • Voltage - Forward (Vf) (Max) @ If

    The parameter "Voltage - Forward (Vf) (Max) @ If" refers to the maximum voltage drop across a diode when it is forward-biased and conducting a specified forward current (If). It indicates the maximum potential difference the diode can withstand while allowing current to flow in the forward direction without breaking down. This value is crucial for designing circuits as it helps determine how much voltage will be lost across the diode during operation. Higher Vf values can lead to reduced efficiency in power applications, making this parameter essential for optimizing circuit performance.

    820mV @ 500mA
  • Forward Current

    Current which flows upon application of forward voltage.

    500mA
  • Operating Temperature - Junction

    Operating Temperature - Junction refers to the maximum temperature at which the junction of an electronic component can safely operate without causing damage or performance degradation. This parameter is crucial for determining the reliability and longevity of the component, as excessive heat can lead to thermal stress and failure. Manufacturers specify the operating temperature range to ensure that the component functions within safe limits under normal operating conditions. It is important for designers and engineers to consider the operating temperature - junction when selecting and using electronic components to prevent overheating and ensure optimal performance.

    150°C Max
  • Max Reverse Voltage (DC)

    Max Reverse Voltage (DC) refers to the maximum voltage that a semiconductor device, such as a diode, can withstand in the reverse bias direction without failing. Exceeding this voltage can lead to breakdown and potential damage to the component. It is a critical parameter in circuit design to ensure reliability and prevent failure when the device is subjected to reverse voltage conditions.

    40V
  • Average Rectified Current

    Mainly used to characterize alternating voltage and current. It can be computed by averaging the absolute value of a waveform over one full period of the waveform.

    500mA
  • Reverse Recovery Time

    Reverse Recovery Time is a key parameter in semiconductor devices, particularly diodes and transistors. It refers to the time taken for a diode or transistor to switch from conducting in the forward direction to blocking in the reverse direction when the polarity of the voltage across the device is reversed. This parameter is crucial in applications where fast switching speeds are required, as a shorter reverse recovery time allows for quicker response times and improved efficiency. Reverse Recovery Time is typically specified in datasheets for electronic components and is an important consideration in circuit design to ensure optimal performance and reliability.

    1.25 ns
  • Capacitance @ Vr, F

    Capacitance @ Vr, F refers to the capacitance value of a capacitor measured at a specified rated voltage (Vr). It indicates how much electrical charge the capacitor can store per volt when subjected to this voltage. This parameter is essential for understanding the behavior of capacitors in circuits, particularly under different voltage conditions, and ensures that the component operates within its safe limits. The unit of measurement is Farads (F), which quantifies the capacitor's ability to hold an electrical charge.

    18pF @ 1V 1MHz
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Nexperia USA Inc. PMEG4005AESFYL.

PMEG4005AESFYL Overview

There is an average rectified current of 500mA volts for this device.The allowable value of forward current reaches 500mA.

PMEG4005AESFYL Features

an average rectified current of 500mA volts

PMEG4005AESFYL Applications

There are a lot of Nexperia USA Inc.
PMEG4005AESFYL applications of single-phase diode rectifier.


  • DC motor control and drives
  • Battery chargers
  • Welders
  • Power converters
  • Reverse Polarity Protection
  • Ultra High-Speed Switching
  • Freewheeling
  • Polarity Protection Diode
  • Recirculating Diode
  • Switching Diode
The three parts on the right have similar specifications to Nexperia USA Inc. & PMEG4005AESFYL.
PMEG4005AESFYL Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "PMEG4005AESFYL" in Nexperia USA Inc. PMEG4005AESFYL.
  • Part Number
  • Manufacturer
  • Package
  • Description