Panasonic Electronic Components DA37103E0L
Panasonic Electronic Components DA37103E0L
feed

Panasonic Electronic Components DA37103E0L

Manufacturer No:

DA37103E0L

Utmel No:

1850-DA37103E0L

Package:

SOT-723

Datasheet:

DA37103E0L

ECAD Model:

Description:

Standard Rectifier Diode 1 Pair Common Cathode Small Signal =< 200mA (Io), Any Speed 150°C Max 100mA 80V-DC SOT-723 Surface Mount

Quantity:

Unit Price: $0.137997

Ext Price: $0.14

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 1100

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.137997

    $0.14

  • 500

    $0.101468

    $50.73

  • 1000

    $0.084557

    $84.56

  • 2000

    $0.077575

    $155.15

  • 5000

    $0.072500

    $362.50

  • 10000

    $0.067442

    $674.42

  • 15000

    $0.065224

    $978.36

  • 50000

    $0.064134

    $3,206.70

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
DA37103E0L information

Specifications
Documents & Media
Product Details
Product Comparison
Panasonic Electronic Components DA37103E0L technical specifications, attributes, parameters and parts with similar specifications to Panasonic Electronic Components DA37103E0L.
  • Type
    Parameter
  • Factory Lead Time
    10 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    SOT-723
  • Number of Pins
    3
  • Diode Element Material

    The parameter "Diode Element Material" refers to the specific semiconductor material used in the construction of a diode. This material determines the electrical characteristics and performance of the diode, including its forward voltage drop, reverse breakdown voltage, and switching speed. Common diode element materials include silicon, germanium, and gallium arsenide, each offering different advantages for various applications. The choice of material impacts the diode's efficiency, thermal stability, and overall suitability for specific electronic circuits.

    SILICON
  • Number of Elements
    2
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Published
    2014
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Discontinued
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    150°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55°C
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8541.10.00.60
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    FLAT
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    DA37103
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Common Cathode
  • Speed

    In electronic components, "Speed" typically refers to the rate at which data can be processed or transferred within the component. It is a measure of how quickly the component can perform its functions, such as executing instructions or transmitting signals. Speed is often specified in terms of frequency, such as clock speed in processors or data transfer rate in memory modules. Higher speed components can perform tasks more quickly, leading to improved overall performance in electronic devices. It is an important parameter to consider when designing or selecting electronic components for specific applications.

    Small Signal =< 200mA (Io), Any Speed
  • Diode Type

    In electronic components, the parameter "Diode Type" refers to the specific type or configuration of a diode, which is a semiconductor device that allows current to flow in one direction only. There are various types of diodes, each designed for specific applications and functions. Common diode types include rectifier diodes, zener diodes, light-emitting diodes (LEDs), and Schottky diodes, among others. The diode type determines the diode's characteristics, such as forward voltage drop, reverse breakdown voltage, and maximum current rating, making it crucial for selecting the right diode for a particular circuit or application. Understanding the diode type is essential for ensuring proper functionality and performance in electronic circuits.

    Standard
  • Current - Reverse Leakage @ Vr

    Current - Reverse Leakage @ Vr is a parameter that describes the amount of current that flows in the reverse direction through a diode or other semiconductor component when a reverse voltage (Vr) is applied across it. This leakage current is typically very small, but it is important to consider in electronic circuits as it can affect the overall performance and reliability of the component. The reverse leakage current is influenced by factors such as the material properties of the semiconductor, temperature, and the magnitude of the reverse voltage applied. Manufacturers provide this parameter in datasheets to help engineers and designers understand the behavior of the component in reverse bias conditions.

    100nA @ 80V
  • Voltage - Forward (Vf) (Max) @ If

    The parameter "Voltage - Forward (Vf) (Max) @ If" refers to the maximum voltage drop across a diode when it is forward-biased and conducting a specified forward current (If). It indicates the maximum potential difference the diode can withstand while allowing current to flow in the forward direction without breaking down. This value is crucial for designing circuits as it helps determine how much voltage will be lost across the diode during operation. Higher Vf values can lead to reduced efficiency in power applications, making this parameter essential for optimizing circuit performance.

    1.2V @ 100mA
  • Forward Current

    Current which flows upon application of forward voltage.

    150mA
  • Max Reverse Leakage Current

    Max Reverse Leakage Current refers to the maximum amount of current that can flow through a semiconductor device, such as a diode or transistor, when it is reverse biased. This current is an important parameter as it indicates the level of unintended current that can flow when the device is not conducting in the forward direction. High values of reverse leakage current can lead to power loss, reduced efficiency, and may affect the performance and reliability of electronic circuits. It is particularly critical in applications where precise current control and low power consumption are necessary.

    100nA
  • Operating Temperature - Junction

    Operating Temperature - Junction refers to the maximum temperature at which the junction of an electronic component can safely operate without causing damage or performance degradation. This parameter is crucial for determining the reliability and longevity of the component, as excessive heat can lead to thermal stress and failure. Manufacturers specify the operating temperature range to ensure that the component functions within safe limits under normal operating conditions. It is important for designers and engineers to consider the operating temperature - junction when selecting and using electronic components to prevent overheating and ensure optimal performance.

    150°C Max
  • Current - Average Rectified (Io)

    The parameter "Current - Average Rectified (Io)" in electronic components refers to the average value of the rectified current flowing through the component. This parameter is important in determining the average power dissipation and thermal considerations of the component. It is typically specified in datasheets for diodes, rectifiers, and other components that handle alternating current (AC) and convert it to direct current (DC). Understanding the average rectified current helps in selecting the appropriate component for a given application to ensure reliable operation and prevent overheating.

    100mA DC
  • Forward Voltage

    the amount of voltage needed to get current to flow across a diode.

    1.2V
  • Max Reverse Voltage (DC)

    Max Reverse Voltage (DC) refers to the maximum voltage that a semiconductor device, such as a diode, can withstand in the reverse bias direction without failing. Exceeding this voltage can lead to breakdown and potential damage to the component. It is a critical parameter in circuit design to ensure reliability and prevent failure when the device is subjected to reverse voltage conditions.

    80V
  • Average Rectified Current

    Mainly used to characterize alternating voltage and current. It can be computed by averaging the absolute value of a waveform over one full period of the waveform.

    100mA
  • Reverse Recovery Time

    Reverse Recovery Time is a key parameter in semiconductor devices, particularly diodes and transistors. It refers to the time taken for a diode or transistor to switch from conducting in the forward direction to blocking in the reverse direction when the polarity of the voltage across the device is reversed. This parameter is crucial in applications where fast switching speeds are required, as a shorter reverse recovery time allows for quicker response times and improved efficiency. Reverse Recovery Time is typically specified in datasheets for electronic components and is an important consideration in circuit design to ensure optimal performance and reliability.

    10 ns
  • Peak Reverse Current

    The maximum voltage that a diode can withstand in the reverse direction without breaking down or avalanching.If this voltage is exceeded the diode may be destroyed. Diodes must have a peak inverse voltage rating that is higher than the maximum voltage that will be applied to them in a given application.

    100nA
  • Max Repetitive Reverse Voltage (Vrrm)

    The Max Repetitive Reverse Voltage (Vrrm) is a crucial parameter in electronic components, particularly in diodes and transistors. It refers to the maximum voltage that can be applied across the component in the reverse direction without causing damage. This parameter is important for ensuring the proper functioning and longevity of the component in circuits where reverse voltage may be present. Exceeding the Vrrm rating can lead to breakdown and failure of the component, so it is essential to carefully consider this specification when designing or selecting components for a circuit.

    80V
  • Peak Non-Repetitive Surge Current

    Peak Non-Repetitive Surge Current is a specification in electronic components that refers to the maximum current that the component can withstand for a short duration without sustaining damage. This surge current typically occurs as a result of sudden voltage spikes or transient events in the circuit. It is important to consider this parameter when designing or selecting components to ensure they can handle occasional high-current surges without failing. The value of Peak Non-Repetitive Surge Current is usually specified in amperes and is crucial for protecting the component and maintaining the overall reliability of the circuit.

    750mA
  • Diode Configuration

    Diode configuration refers to the specific arrangement and connection of diodes within an electronic circuit. It can determine how the diode functions, whether as a rectifier, switch, or voltage regulator. Common configurations include series, parallel, and bridge configurations, each with distinct characteristics affecting the flow of current and voltage in the circuit. Proper diode configuration is essential for achieving desired circuit behaviors and performance.

    1 Pair Common Cathode
  • Max Forward Surge Current (Ifsm)

    Max Forward Surge Current (Ifsm) is a parameter used to specify the maximum peak current that a diode or other electronic component can withstand for a short duration during a surge event. Surge currents can occur due to sudden changes in voltage or power supply fluctuations, and the Ifsm rating helps determine the component's ability to handle such transient overloads without being damaged. It is important to consider the Ifsm rating when selecting components for applications where surge currents are expected, such as in power supplies, motor drives, and other high-power circuits. Exceeding the Ifsm rating can lead to overheating, degradation, or failure of the component, so it is crucial to ensure that the chosen component can safely handle the expected surge currents in the circuit.

    750mA
  • Recovery Time

    Recovery time in electronic components refers to the time it takes for a device to return to its normal operating state after being subjected to a specific stimulus or disturbance. This parameter is particularly important in devices such as diodes, transistors, and capacitors, where the recovery time can impact the overall performance and reliability of the component. A shorter recovery time indicates that the component can quickly recover from a transient event, ensuring proper functionality and minimizing any potential disruptions in the circuit. Manufacturers typically provide recovery time specifications to help engineers and designers select components that meet the requirements of their specific applications.

    10 ns
  • Frequency Band

    Frequency band refers to a range of frequencies within the electromagnetic spectrum that a particular electronic component or device is designed to operate within. It is a crucial parameter that determines the performance and functionality of the component. The frequency band specifies the upper and lower limits of frequencies that the component can effectively transmit, receive, or process signals. Components such as antennas, filters, amplifiers, and transceivers are designed with specific frequency bands in mind to ensure optimal performance and compatibility with other components in a system. Understanding the frequency band of electronic components is essential for designing and integrating them into electronic systems for efficient and reliable operation.

    VERY HIGH FREQUENCY
  • Diode Capacitance-Max

    The parameter "Diode Capacitance-Max" refers to the maximum capacitance value that a diode can exhibit under specified conditions. Capacitance in a diode is a measure of its ability to store and release electrical charge, which can affect the diode's performance in certain applications. A higher capacitance value can lead to slower response times and increased signal distortion in high-frequency circuits. It is important to consider the maximum capacitance of a diode when designing electronic circuits to ensure proper functionality and performance.

    15pF
  • Height
    520μm
  • Length
    1.2mm
  • Width
    800μm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    Unknown
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Panasonic Electronic Components DA37103E0L.

DA37103E0L Overview

In operation, this device will be set to 1.2V volts forward.In operation, this device will be set to 150mA volts forward.This device is powered with reverse voltage peak of 100nA V.When it's reverse biased, it's maximal reverse leakage current is 100nA.

DA37103E0L Features

1.2V forward voltage
a peak voltage of 100nA
a reverse voltage peak of 100nA

DA37103E0L Applications

There are a lot of Panasonic Electronic Components
DA37103E0L applications of rectifier diode array.


  • Rectifier for drives applications
  • Crowbar applications
  • Rectifiers for UBS
  • Battery chargers
  • Rectifiers in switch mode power supplies (SMPS)
  • Free wheeling diode in low voltage converters
  • General Rectification
The three parts on the right have similar specifications to Panasonic Electronic Components & DA37103E0L.
  • Image
    Part Number
    Manufacturer
    Mount
    Package / Case
    Average Rectified Current
    Current - Average Rectified (Io)
    Reverse Recovery Time
    Speed
    Moisture Sensitivity Level (MSL)
    Terminal Form
    Availability
    Price
    Quantity
    Compare Two Parts
    Compare Three Parts
  • DA37103E0L

    DA37103E0L

    Surface Mount

    SOT-723

    100 mA

    100mA (DC)

    10 ns

    Small Signal =< 200mA (Io), Any Speed

    1 (Unlimited)

    FLAT

    1100
    $0.137997
  • NSVBAS21M3T5G

    Surface Mount

    SOT-723

    200 mA

    200mA (DC)

    50 ns

    Small Signal =< 200mA (Io), Any Speed

    1 (Unlimited)

    FLAT

    8000
    $0.02721

    Same as the main part number.

DA37103E0L Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "DA37103E0L" in Panasonic Electronic Components DA37103E0L.
  • Part Number
  • Manufacturer
  • Package
  • Description