

Sanrex DCA200DB80
Manufacturer No:
DCA200DB80
Tiny WHSLManufacturer:
Utmel No:
2118-DCA200DB80
Package:
Module
Description:
1 Pair Series Connection Standard Recovery >500ns, > 200mA (Io) -40°C ~ 150°C Module Panel Mount
Quantity:
Unit Price: $26.024737
Ext Price: $26.02
Delivery:





Payment:











In Stock : 44
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$26.024737
$26.02
10
$24.551639
$245.52
100
$23.161924
$2,316.19
500
$21.850871
$10,925.44
1000
$20.614030
$20,614.03
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Panel Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Module - Mounting Feature
a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.
Flange - Shell Material
The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.
Aluminum - Supplier Device Package
The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.
- - Insert Material
The parameter "Insert Material" in electronic components refers to the specific material used to create the insert portions of connectors or other components that facilitate assembly or enhance performance. This material is chosen for its electrical, thermal, and mechanical properties, which can influence the overall functionality and reliability of the component in its intended application. Common insert materials include plastics, ceramics, and metals, each selected based on the requirements of the environment in which the component will operate.
- - Backshell Material, Plating
Backshell Material, Plating refers to the material and plating used in the backshell of electronic components. The backshell is a protective covering or housing that is typically located at the rear end of a connector or cable assembly. The material and plating used in the backshell are chosen based on factors such as durability, conductivity, corrosion resistance, and compatibility with the surrounding environment. Common materials used for backshells include aluminum, stainless steel, and plastic, while plating options may include nickel, zinc, or gold to provide additional protection and improve electrical performance. The choice of backshell material and plating is crucial in ensuring the reliability and longevity of electronic components in various applications.
- - Voltage, Rating-
- PackageBulk
- Primary MaterialMetal
- Base Product Number
"Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.
MS3450L28 - MfrAmphenol Aerospace Operations
- Product StatusActive
- Contact MaterialsCopper Alloy
- Contact Finish MatingGold
- Current - Average Rectified (Io) (per Diode)200A
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-55°C ~ 200°C - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Military, MIL-DTL-5015 - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Crimp - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
Receptacle, Male Pins - Number of Positions6 (Power)
- ColorSilver
- Applications
The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.
Automotive, Military - Fastening Type
There are 5 Main Types of Fastening Type: Screws, Nails, Bolts, Anchors, Rivets.
Threaded - Current Rating (Amps)
The parameter "Current Rating (Amps)" in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is typically measured in amperes (A) and is an important specification to consider when designing or selecting components for a circuit. Exceeding the current rating of a component can lead to overheating, malfunction, or even failure of the component. It is crucial to ensure that the current rating of a component matches the requirements of the circuit to prevent any potential issues and ensure reliable operation.
13A, 80A - Technology
In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.
Standard - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Z - Shielding
Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.
Unshielded - Ingress Protection
Ingress Protection rating (or just IP rating), is an international standard (IEC 60529) used to rate the degree of protection or sealing effectiveness in electrical enclosures against intrusion of objects, water, dust or accidental contact. It corresponds to the European standard EN 60529.
Fluid Resistant - Shell Finish
Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.
Electroless Nickel - Shell Size - Insert
The parameter "Shell Size - Insert" in electronic components refers to the physical size of the connector shell or housing that holds the insert or contact arrangement within the component. The shell size is typically specified by a numerical designation that corresponds to a specific size and configuration of the connector. This parameter is important for ensuring compatibility and proper fit between different components or devices that use the same type of connector. Manufacturers provide detailed specifications for shell size to help users select the appropriate connector for their specific application requirements.
28-22 - Speed
In electronic components, "Speed" typically refers to the rate at which data can be processed or transferred within the component. It is a measure of how quickly the component can perform its functions, such as executing instructions or transmitting signals. Speed is often specified in terms of frequency, such as clock speed in processors or data transfer rate in memory modules. Higher speed components can perform tasks more quickly, leading to improved overall performance in electronic devices. It is an important parameter to consider when designing or selecting electronic components for specific applications.
Standard Recovery >500ns, > 200mA (Io) - Current - Reverse Leakage @ Vr
Current - Reverse Leakage @ Vr is a parameter that describes the amount of current that flows in the reverse direction through a diode or other semiconductor component when a reverse voltage (Vr) is applied across it. This leakage current is typically very small, but it is important to consider in electronic circuits as it can affect the overall performance and reliability of the component. The reverse leakage current is influenced by factors such as the material properties of the semiconductor, temperature, and the magnitude of the reverse voltage applied. Manufacturers provide this parameter in datasheets to help engineers and designers understand the behavior of the component in reverse bias conditions.
50 mA @ 800 V - Shell Size, MIL
The parameter "Shell Size, MIL" in electronic components refers to the physical size of the component's outer shell or housing, measured in thousandths of an inch (mil). It is a standardized measurement used to ensure compatibility and interchangeability of components within a specific series or family. The shell size typically includes dimensions such as diameter, length, and overall shape of the component, and is important for determining how the component will fit into a system or assembly. Manufacturers provide shell size information to help users select the appropriate components for their specific application requirements.
- - Voltage - Forward (Vf) (Max) @ If
The parameter "Voltage - Forward (Vf) (Max) @ If" refers to the maximum voltage drop across a diode when it is forward-biased and conducting a specified forward current (If). It indicates the maximum potential difference the diode can withstand while allowing current to flow in the forward direction without breaking down. This value is crucial for designing circuits as it helps determine how much voltage will be lost across the diode during operation. Higher Vf values can lead to reduced efficiency in power applications, making this parameter essential for optimizing circuit performance.
1.3 V @ 620 A - Cable Opening
Cable Opening in electronic components refers to the physical opening or port through which a cable can be connected to the component. This opening is designed to accommodate the specific type and size of cable that is intended to be used with the component. The cable opening is an important feature as it allows for the secure and proper connection of the cable to the component, ensuring reliable data or power transmission. It is essential to match the cable opening size and type with the corresponding cable to prevent any compatibility issues and to maintain the integrity of the connection.
- - Operating Temperature - Junction
Operating Temperature - Junction refers to the maximum temperature at which the junction of an electronic component can safely operate without causing damage or performance degradation. This parameter is crucial for determining the reliability and longevity of the component, as excessive heat can lead to thermal stress and failure. Manufacturers specify the operating temperature range to ensure that the component functions within safe limits under normal operating conditions. It is important for designers and engineers to consider the operating temperature - junction when selecting and using electronic components to prevent overheating and ensure optimal performance.
-40°C ~ 150°C - Voltage - DC Reverse (Vr) (Max)
Voltage - DC Reverse (Vr) (Max) is a parameter in electronic components that specifies the maximum reverse voltage that the component can withstand without breaking down. This parameter is crucial for components like diodes and transistors that are often subjected to reverse voltage during operation. Exceeding the maximum reverse voltage can lead to the component failing or getting damaged. Designers need to consider this parameter when selecting components to ensure the reliability and longevity of their circuits.
800 V - Diode Configuration
Diode configuration refers to the specific arrangement and connection of diodes within an electronic circuit. It can determine how the diode functions, whether as a rectifier, switch, or voltage regulator. Common configurations include series, parallel, and bridge configurations, each with distinct characteristics affecting the flow of current and voltage in the circuit. Proper diode configuration is essential for achieving desired circuit behaviors and performance.
1 Pair Series Connection - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
- - Contact Finish Thickness - Mating
Contact Finish Thickness - Mating is a parameter in electronic components that refers to the thickness of the plating or finish on the contact surfaces of a connector or terminal that come into direct contact with mating components. This parameter is crucial for ensuring proper electrical conductivity and mechanical stability during mating and unmating processes. The contact finish thickness affects the overall reliability and performance of the connection by influencing factors such as contact resistance, wear resistance, and corrosion resistance. Manufacturers specify this parameter to ensure compatibility and optimal performance in various applications.
50.0µin (1.27µm) - Material Flammability Rating
The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.
-