Vishay Semiconductors U3D-E3/57T
Vishay Semiconductors U3D-E3/57T
feed

Vishay Semiconductors U3D-E3/57T

Manufacturer No:

U3D-E3/57T

Utmel No:

2668-U3D-E3/57T

Package:

-

ECAD Model:

Description:

RECTIFIER DIODE Bridge Rectifier 1-Phase

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
U3D-E3/57T information

Specifications
Documents & Media
Product Details
Vishay Semiconductors U3D-E3/57T technical specifications, attributes, parameters and parts with similar specifications to Vishay Semiconductors U3D-E3/57T.
  • Type
    Parameter
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Diode Element Material

    The parameter "Diode Element Material" refers to the specific semiconductor material used in the construction of a diode. This material determines the electrical characteristics and performance of the diode, including its forward voltage drop, reverse breakdown voltage, and switching speed. Common diode element materials include silicon, germanium, and gallium arsenide, each offering different advantages for various applications. The choice of material impacts the diode's efficiency, thermal stability, and overall suitability for specific electronic circuits.

    SILICON
  • Number of Terminals
    2
  • Exterior Housing Material

    Exterior Housing Material in electronic components refers to the material used to encase and protect the internal electronic circuitry of a device. This material serves as the outer shell or casing of the component, providing physical protection from environmental factors such as moisture, dust, and impact. Common exterior housing materials for electronic components include plastics, metals, and composite materials. The choice of housing material is important as it can impact the component's durability, thermal management, and overall performance in various operating conditions. Manufacturers select the appropriate exterior housing material based on the specific requirements of the electronic component and the intended application.

    1
  • Type of capacitor
    ceramic
  • Kind of capacitor
    MLCC
  • Mounting
    SMD
  • Case - inch
    0201
  • Case - mm
    0603
  • Capacitors series
    GCQ
  • Rohs Code
    Yes
  • Part Life Cycle Code
    End Of Life
  • Ihs Manufacturer
    VISHAY SEMICONDUCTORS
  • Part Package Code
    DO-214AB
  • Package Description
    R-PDSO-C2
  • Forward Voltage-Max (VF)
    0.83 V
  • Operating Temperature-Max
    150 °C
  • Operating Temperature-Min
    -55 °C
  • Package Body Material
    PLASTIC/EPOXY
  • Package Shape
    RECTANGULAR
  • Package Style
    SMALL OUTLINE
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    Yes
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    MATTE TIN
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    FREE WHEELING DIODE, LOW POWER LOSS
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8541.10.00.80
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    9.9pF
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    C BEND
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    unknown
  • Pin Count

    a count of all of the component leads (or pins)

    2
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    R-PDSO-C2
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Dielectric

    Dielectric is a term used in the context of electronic components to refer to a material's ability to store electrical energy in an electric field. It is a key parameter in capacitors, insulators, and other electronic devices. Dielectric materials have high electrical resistance and low conductivity, allowing them to separate and insulate conductive materials while still allowing the passage of electric fields. The dielectric constant, also known as relative permittivity, is a measure of a material's ability to store electrical energy and is an important factor in determining the capacitance of a component. Overall, the dielectric property plays a crucial role in the design and performance of various electronic components.

    C0G (NP0)
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE
  • Diode Type

    In electronic components, the parameter "Diode Type" refers to the specific type or configuration of a diode, which is a semiconductor device that allows current to flow in one direction only. There are various types of diodes, each designed for specific applications and functions. Common diode types include rectifier diodes, zener diodes, light-emitting diodes (LEDs), and Schottky diodes, among others. The diode type determines the diode's characteristics, such as forward voltage drop, reverse breakdown voltage, and maximum current rating, making it crucial for selecting the right diode for a particular circuit or application. Understanding the diode type is essential for ensuring proper functionality and performance in electronic circuits.

    RECTIFIER DIODE
  • Output Current-Max

    Output Current-Max is a parameter in electronic components that specifies the maximum amount of current that can be safely drawn from the output of the component without causing damage. It is an important specification to consider when designing circuits to ensure that the component can handle the required current without overheating or failing. Exceeding the maximum output current can lead to performance issues, component damage, or even complete failure of the circuit. It is crucial to adhere to the specified maximum output current to ensure the reliable operation of the electronic component and the overall circuit.

    3 A
  • Number of Phases
    1
  • Rep Pk Reverse Voltage-Max

    Rep Pk Reverse Voltage-Max refers to the maximum reverse voltage that an electronic component, such as a diode, can withstand during a specified period of time without failing. This parameter is crucial in determining the safe operating limits of components in circuits where reverse voltage conditions may occur. Exceeding this value can lead to breakdown or permanent damage to the component. It is typically expressed in volts and is a key specification in signal and power applications.

    200 V
  • JEDEC-95 Code

    JEDEC-95 Code is a standardized identification system used by the Joint Electron Device Engineering Council to categorize and describe semiconductor devices. This code provides a unique alphanumeric identifier for various memory components, ensuring consistency in documentation and communication across the electronics industry. The format includes information about the type, capacity, and technology of the device, facilitating easier specification and understanding for manufacturers and engineers.

    DO-214AB
  • Non-rep Pk Forward Current-Max

    Non-rep Pk Forward Current-Max refers to the maximum forward current that a semiconductor device, such as a diode or LED, can handle in a pulsed or non-repetitive manner without being damaged. This parameter is essential for designers to ensure that the component operates reliably under specific conditions, particularly during transient events like switching or fault conditions. Exceeding this limit can lead to overheating or failure of the device.

    100 A
  • Reverse Recovery Time-Max

    The "Reverse Recovery Time-Max" parameter in electronic components, such as diodes and transistors, refers to the maximum time it takes for the component to switch from the conducting state to the non-conducting state when the polarity of the applied voltage is reversed. This parameter is crucial in applications where fast switching speeds are required, as a longer reverse recovery time can lead to inefficiencies and potential performance issues. Manufacturers provide this specification to help designers and engineers select components that meet the required performance criteria for their specific applications. It is typically measured in nanoseconds or microseconds, with lower values indicating faster switching speeds and better overall performance.

    0.03 μs
  • 2nd Connector Number of Positions Loaded
    ULTRA FAST RECOVERY
  • Saturation Current

    Saturation current is the maximum current that flows through a diode when it is in the forward-biased condition, and additional increases in voltage do not lead to significant increases in current. It represents the point where all available carriers have been used for conduction, and further increases in voltage only result in a minimal change in current. In transistors, saturation current refers to the collector current in a saturated state, where the transistor is fully ON and providing the maximum amplification of input signals. This parameter is crucial for understanding the behavior of semiconductor devices in various operating conditions.

    1
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Vishay Semiconductors U3D-E3/57T.

U3D-E3/57T Overview

With 2 pins, it is equipped with a very low number.3 A is its maximum supported output voltage.

U3D-E3/57T Features

2 pin count
the maximum output voltage of 3 A

U3D-E3/57T Applications

There are a lot of Vishay Semiconductors
U3D-E3/57T applications of bridge rectifiers.


  • Fuse-in-glass diodes design
  • Electrically isolated aluminum case
  • Motor controls – Low Voltage and Medium Voltage converters
  • SCR power bridges for solid state starters
  • SCR and diode based input rectifiers
  • Crowbar systems for motor drives
  • Wind power (alternative energy) – Converters available as diodes, SCRs or IGBTs
  • Transportation – Traction rectifiers and auxiliary rectifiers
  • Inductive heating – Input rectifiers
  • Welding systems – Input rectifiers and fast recovery diodes