KA3525A Controller: Circuit, Pinout, and Datasheet [Video&FAQ]

Sophie

Published: 01 December 2021 | Last Updated: 01 December 2021

27921

KA3525A

KA3525A

ON Semiconductor

16 Terminals 7V~20V 16-Pin KA3525A DC to DC converter IC SWITCHING CONTROLLER 2 Outputs 60Hz~430kHz Transistor Driver

Purchase Guide

16 Terminals 7V~20V 16-Pin KA3525A DC to DC converter IC SWITCHING CONTROLLER 2 Outputs 60Hz~430kHz Transistor Driver

The KA3525A is a monolithic integrated circuit with all of the control circuitry required for a pulse width modulating regulator. This article mainly introduces circuit, pinout,datasheet and other information about ON Semiconductor KA3525A.

This video will show you the circuit of KA3525A Controller.

simple inverter circuit ll KA3525A ic inverter

KA3525A Description

The KA3525A is a monolithic integrated circuit with all of the control circuitry required for a pulse width modulating regulator. In the chip will find a voltage reference, an error amplifier, a pulse width modulator, an oscillator, an under-voltage lockout, a soft start circuit, and the output driver.

This is a 16-pin chip with a reference output current of roughly 50mA and a supply voltage of around 40V. The operation temperature is 0 to 70 degrees Celsius, whereas the storage temperature is -65 to 150 degrees Celsius. The output sink current is 500mA and the power dissipation is 100mW.

This pulse-width modulation regulator   IC  has 16 pins and creates two PWM signals that are complementary to one another. The output voltage is controlled by feedback circuitry that compares the feedback signal to a reference voltage. This component is commonly used in switch-mode power supplies and other electronic circuits.

If the feedback signal approaches its limit, the device's shutdown protection circuit cuts off the  PWM  signal.


KA3525A Pinout

The KA3525A Pinout is shown as follows.

pinout.jpg

Pinout

• Pin 1 is the inverting pin, while pin 2 is the non-inverting pin.

• The duty cycle increases  if the voltage on the non-inverting pin is smaller than the voltage on the inverting pin

• Pin 3 is used for the synchronization of two waves, while Pin 4 is an oscillator's output pin.

• Pins 5, 6, and 7 are used to change the PWM frequency.

• We can change the value of the discharge resistor, CT capacitor, and RT resistor to change the frequency of PWM.

• Pin 8 SS is a soft start pin that allows the output signal to be enabled after a certain amount of time. The soft-start time is directly proportional to the capacitance.

• Pin 9 is a compensation pin that is used to mitigate rapid output voltage signal swings.

• Pin 10 is referred to as the shutdown pin. When the current hits its limit, the PWM signal is turned off.

• The output pins (pins 11 and 14) are used to supply input to the MOSFETs. A MOSFET driver circuit is included into the KA3525A.

• The power pins are pins 13 and 15. Vc should be between 5 and 35 volts, while Vin should be between 8 and 35 volts.

• Pin 16 is the reference pin, which is used to modify the reference voltage via pins 1 and 2.


KA3525A CAD Model

The followings are KA3525A Symbol, Footprint and 3D Model.

symbol.png

Symbol

footprint.png

Footprint

3D Model.jpg

3D Model


KA3525A Features

• 5V ±1% Reference

• Oscillator Sync Terminal

• Internal Soft Start

• Deadtime Control

• Under Voltage Lockout


Specifications

ON Semiconductor KA3525A technical specifications, attributes, parameters and parts with similar specifications to ON Semiconductor KA3525A.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 1 day ago)
  • Factory Lead Time
    11 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    16-DIP (0.300, 7.62mm)
  • Number of Pins
    16
  • Weight
    1.627826g
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    0°C~70°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2002
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    16
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Number of Functions
    1
  • Frequency

    In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.

    430kHz
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    KA3525A
  • Number of Outputs
    2
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    5.1V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Transistor Driver
  • Input Voltage-Nom

    Input Voltage-Nom refers to the nominal or rated input voltage that an electronic component or device is designed to operate within. This parameter specifies the voltage level at which the component is expected to function optimally and safely. It is important to ensure that the actual input voltage supplied to the component does not exceed this nominal value to prevent damage or malfunction. Manufacturers provide this specification to guide users in selecting the appropriate power supply or input voltage source for the component. It is a critical parameter to consider when designing or using electronic circuits to ensure reliable performance and longevity of the component.

    20V
  • Analog IC - Other Type

    Analog IC - Other Type is a parameter used to categorize electronic components that are integrated circuits (ICs) designed for analog signal processing but do not fall into more specific subcategories such as amplifiers, comparators, or voltage regulators. These ICs may include specialized analog functions such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), voltage references, or signal conditioning circuits. They are typically used in various applications where precise analog signal processing is required, such as in audio equipment, instrumentation, communication systems, and industrial control systems. Manufacturers provide detailed specifications for these components to help engineers select the most suitable IC for their specific design requirements.

    SWITCHING CONTROLLER
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Positive
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    500mA
  • Voltage - Supply (Vcc/Vdd)

    Voltage - Supply (Vcc/Vdd) is a key parameter in electronic components that specifies the voltage level required for the proper operation of the device. It represents the power supply voltage that needs to be provided to the component for it to function correctly. This parameter is crucial as supplying the component with the correct voltage ensures that it operates within its specified limits and performance characteristics. It is typically expressed in volts (V) and is an essential consideration when designing and using electronic circuits to prevent damage and ensure reliable operation.

    7V~20V
  • Max Supply Current

    Max Supply Current refers to the maximum amount of electrical current that a component can draw from its power supply under normal operating conditions. It is a critical parameter that ensures the component operates reliably without exceeding its thermal limits or damaging internal circuitry. Exceeding this current can lead to overheating, performance degradation, or failure of the component. Understanding this parameter is essential for designing circuits that provide adequate power while avoiding overload situations.

    20mA
  • Control Features

    Control features in electronic components refer to specific functionalities or characteristics that allow users to manage and regulate the operation of the component. These features are designed to provide users with control over various aspects of the component's performance, such as adjusting settings, monitoring parameters, or enabling specific modes of operation. Control features can include options for input/output configurations, power management, communication protocols, and other settings that help users customize and optimize the component's behavior according to their requirements. Overall, control features play a crucial role in enhancing the flexibility, usability, and performance of electronic components in various applications.

    Enable, Soft Start
  • Control Mode

    In electronic components, "Control Mode" refers to the method or mode of operation used to regulate or control the behavior of the component. This parameter determines how the component responds to input signals or commands to achieve the desired output. The control mode can vary depending on the specific component and its intended function, such as voltage regulation, current limiting, or frequency modulation. Understanding the control mode of an electronic component is crucial for proper integration and operation within a circuit or system.

    VOLTAGE-MODE
  • Frequency - Switching

    "Frequency - Switching" in electronic components refers to the rate at which a device, such as a transistor or switching regulator, turns on and off during operation. This parameter is crucial in determining the efficiency and performance of power converters, oscillators, and other circuits that rely on rapid switching. Higher switching frequencies typically allow for smaller component sizes but may require more advanced design considerations to manage heat and electromagnetic interference.

    60Hz~430kHz
  • Max Input Voltage

    Max Input Voltage refers to the maximum voltage level that an electronic component can safely handle without getting damaged. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the specified maximum input voltage can lead to overheating, electrical breakdown, or permanent damage to the component. It is important to carefully adhere to the manufacturer's guidelines regarding the maximum input voltage to prevent any potential issues and maintain the reliability of the electronic device.

    40V
  • Control Technique

    In electronic components, "Control Technique" refers to the method or approach used to regulate and manage the operation of the component. This parameter is crucial in determining how the component functions within a circuit or system. Different control techniques can include analog control, digital control, pulse-width modulation (PWM), and various feedback mechanisms. The choice of control technique can impact the performance, efficiency, and overall functionality of the electronic component. It is important to select the appropriate control technique based on the specific requirements and characteristics of the application in which the component will be used.

    PULSE WIDTH MODULATION
  • Synchronous Rectifier

    Synchronous rectification is a technique for improving the efficiency of rectification by replacing diodes with actively controlled switches, usually power MOSFETs or power bipolar junction transistors (BJT).

    Yes
  • Switcher Configuration

    Switcher Configuration in electronic components refers to the arrangement or setup of a switcher circuit, which is a type of power supply that converts one form of electrical energy into another. The configuration of a switcher circuit includes the specific components used, such as transistors, diodes, capacitors, and inductors, as well as their interconnections and control mechanisms. The switcher configuration determines the efficiency, voltage regulation, and other performance characteristics of the power supply. Different switcher configurations, such as buck, boost, buck-boost, and flyback, are used for various applications depending on the desired output voltage and current requirements. Understanding and selecting the appropriate switcher configuration is crucial in designing reliable and efficient power supply systems for electronic devices.

    PUSH-PULL
  • Max Duty Cycle

    Max Duty Cycle refers to the maximum percentage of time that an electronic component, such as a switch or a power supply, can be in an "on" state during a defined time period. It is an important parameter in pulse-width modulated (PWM) systems and helps determine how often a device can operate without overheating or sustaining damage. By specifying the maximum duty cycle, manufacturers provide guidance on the safe operational limits of the component, ensuring reliability and efficiency in various applications.

    49 %
  • Output Phases

    Output Phases in electronic components refer to the number of distinct output signals or waveforms that the component can generate. This parameter is commonly associated with devices such as power inverters, motor drives, and signal generators. The output phases indicate how many separate signals can be produced simultaneously by the component, with each phase typically representing a different electrical waveform or signal. Understanding the output phases of an electronic component is important for designing and implementing systems that require multiple output signals or for ensuring compatibility with other components in a circuit.

    1
  • Height
    3.25mm
  • Length
    19.8mm
  • Width
    6.4mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

Parts with Similar Specs

The three parts on the right have similar specifications to ON Semiconductor & KA3525A.

KA3525A Functional Block Diagram

The following is KA3525A Functional Block Diagram.

Block Diagram.png

Functional Block Diagram


KA3525A Test Circuit

The following shows KA3525A Test Circuit.

Test Circuit.png

Test Circuit


KA3525A Alternative

Part NumberDescriptionManufacturer
KA3525APOWER CIRCUITSPWM Controller programmable frequency upto 430khz, 16LD, MDIP, JEDEC MS-001, .300" WIDE, 1500/RAILFairchild Semiconductor Corporation


KA3525A Applications

• Consumer power electronics applications such as pure sine wave inverters

• Generate a regulated voltage in a boost converter and a buck converter

• Use as other consumer electronics


KA3525A Package

Package.png

Package

KA3525A Manufacturer

ON Semiconductor (Nasdaq: ON) is a disruptive technology firm that is helping to build a brighter future. It was founded in 1999. With an emphasis on automotive and industrial end-markets, the firm is speeding change in megatrends like as vehicle electrification and safety, sustainable energy grids, industrial automation, and 5G and cloud infrastructure. Through a highly specialized and unique product range, Onsemi provides intelligent power and sensor solutions that address the world's most pressing concerns and pave the path for a safer, cleaner, and smarter world.


Trend Analysis

Frequently Asked Questions

What is the difference between KA3525A and SG3525, which one is better?

The manufacturer is different. SG3525 is better. It is a single-chip integrated PWM control chip with excellent performance, complete functions and strong versatility. It is simple, reliable and easy to use and flexible. The output drive is a push-pull output form, which increases the drive capacity; Contains an under-voltage lockout circuit, soft-start control circuit, PWM latch, over-current protection function, adjustable frequency, and can limit the maximum duty cycle.

What is the purpose of KA3525A integrated block?

KA3525A is generally used for pulse width modulation of switching power supply. It is an improved type of SG3524. The switching frequency can reach 200kHz. It is suitable for driving N-channel MOS power tube, switching power supply pulse width modulator (PWM), double-ended output medium-speed type, working voltage The range is 6-40V, the internal reference voltage is 5V, and the maximum output current of the internal drive tube is 100MA.

The 13 and 15 pins of KA3525A are connected to a 12V battery. When the battery voltage drops to 8V, 11 and 14 pins still have output. Why does the under-voltage lockout function not work?

It is normal for the battery voltage to drop, as long as it is not the kind that is left without electricity for a few nights, you can use the charger to charge to 12V, but the voltage must be converted.

What is a monolithic integrated circuit with all of the control circuitry required for a pulse width modulating regulator?

KA3525A.

What is the voltage reference in the KA3525A?

An error amplifier.

What is the supply voltage of the KA3525A?

40V.

What is the operation temperature of the KA3525A?

0 to 70 degrees Celsius.

What is the power dissipation of the KA3525A?

100mW.

How many pins does the pulse-width modulation regulator IC have?

16 pins.

What is the output voltage controlled by?

Feedback circuitry.

What are feedback circuitry commonly used in?

Switch-mode power supplies and other electronic circuits.
KA3525A

ON Semiconductor

In Stock: 200

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More