

Microchip JANTXV1N5541DUR-1
Manufacturer No:
JANTXV1N5541DUR-1
Tiny WHSLManufacturer:
Utmel No:
1610-JANTXV1N5541DUR-1
Package:
DO-213AA-2
Description:
±1% 10 nA @ 19.8 V -65°C ~ 175°C DO-213AA-2
Quantity:
Unit Price: $61.295854
Ext Price: $61.30
Delivery:





Payment:











In Stock : 37
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$61.295854
$61.30
10
$57.826278
$578.26
100
$54.553092
$5,455.31
500
$51.465181
$25,732.59
1000
$48.552058
$48,552.06
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
DO-213AA-2 - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Supplier Device Package
The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.
DO-213AA - Lead Free Status / RoHS Status--
- Unit Weight0.001411 oz
- Factory Pack QuantityFactory Pack Quantity1
- Mounting StylesSMD/SMT
- ManufacturerMicrochip
- BrandMicrochip / Microsemi
- RoHSN
- PackageBulk
- Base Product Number
"Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.
1N5541 - Impedance (Max) (Zzt)100 Ohms
- MfrMicrochip Technology
- Product StatusActive
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Alphanumeric Intelligent Display® - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-65°C ~ 175°C - Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
0.78 L x 0.40 W x 0.20 H (19.7mm x 10.2mm x 5.1mm) - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
±1% - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Obsolete - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
-- - ColorGreen
- SubcategoryDiodes & Rectifiers
- Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
SMD/SMT - Configuration
The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.
5 x 7 - Interface
In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.
7-Bit ASCII - Current - Reverse Leakage @ Vr
Current - Reverse Leakage @ Vr is a parameter that describes the amount of current that flows in the reverse direction through a diode or other semiconductor component when a reverse voltage (Vr) is applied across it. This leakage current is typically very small, but it is important to consider in electronic circuits as it can affect the overall performance and reliability of the component. The reverse leakage current is influenced by factors such as the material properties of the semiconductor, temperature, and the magnitude of the reverse voltage applied. Manufacturers provide this parameter in datasheets to help engineers and designers understand the behavior of the component in reverse bias conditions.
10 nA @ 19.8 V - Voltage - Forward (Vf) (Max) @ If
The parameter "Voltage - Forward (Vf) (Max) @ If" refers to the maximum voltage drop across a diode when it is forward-biased and conducting a specified forward current (If). It indicates the maximum potential difference the diode can withstand while allowing current to flow in the forward direction without breaking down. This value is crucial for designing circuits as it helps determine how much voltage will be lost across the diode during operation. Higher Vf values can lead to reduced efficiency in power applications, making this parameter essential for optimizing circuit performance.
1.1 V @ 200 mA - Voltage - Forward (Vf) (Typ)
The parameter "Voltage - Forward (Vf) (Typ)" in electronic components refers to the typical forward voltage drop across the component when it is conducting current in the forward direction. It is a crucial characteristic of components like diodes and LEDs, indicating the minimum voltage required for the component to start conducting current. The forward voltage drop is typically specified as a typical value because it can vary slightly based on factors such as temperature and manufacturing tolerances. Designers use this parameter to ensure that the component operates within its specified voltage range and to calculate power dissipation in the component.
-- - Power - Max
Power - Max is a parameter that specifies the maximum amount of power that an electronic component can handle without being damaged. It is typically measured in watts and indicates the upper limit of power that can be safely supplied to the component. Exceeding the maximum power rating can lead to overheating, malfunction, or permanent damage to the component. It is important to consider the power-max rating when designing circuits or systems to ensure proper operation and longevity of the electronic components.
500 mW - Voltage - Zener (Nom) (Vz)
The parameter "Voltage - Zener (Nom) (Vz)" refers to the nominal voltage of a Zener diode, which is a type of semiconductor device that allows current to flow in the reverse direction when a certain voltage threshold is reached. The Zener voltage, denoted as Vz, is the voltage at which the Zener diode begins to conduct in the reverse direction. This parameter is crucial in determining the specific voltage regulation characteristics of the Zener diode in a circuit. It is important to select a Zener diode with a Vz value that matches the desired voltage regulation requirements of the circuit to ensure proper functionality.
22 V - Product Type
a group of products which fulfill a similar need for a market segment or market as a whole.
Zener Diodes - Millicandela Rating
The Millicandela Rating is a measurement unit used to quantify the luminous intensity of a light-emitting diode (LED) or other light sources. It indicates how bright the light emitted by the component will be in a specific direction. The Millicandela Rating is typically expressed in millicandelas (mcd), with higher values indicating a brighter light output. This parameter is important for determining the visibility and brightness of LEDs in various applications, such as displays, indicators, and lighting systems. Manufacturers provide Millicandela Ratings to help users select the appropriate components for their specific lighting needs.
75µcd - Internal Connection
Internal Connection in electronic components refers to the way in which the internal elements of the component are connected together to perform a specific function. This parameter is crucial for the proper operation of the component and can vary depending on the type of component and its intended use. The internal connection determines how signals and power are routed within the component, ensuring that the desired functionality is achieved. Understanding the internal connection of electronic components is important for troubleshooting, designing circuits, and ensuring reliable performance in electronic systems.
-- - Product Category
a particular group of related products.
Zener Diodes - Length3.7 mm
- Diameter
In electronic components, the parameter "Diameter" typically refers to the measurement of the width of a circular component, such as a resistor, capacitor, or inductor. It is a crucial dimension that helps determine the physical size and fit of the component within a circuit or on a circuit board. The diameter is usually measured in millimeters (mm) or inches (in) and is important for ensuring proper placement and soldering of the component during assembly. Understanding the diameter of electronic components is essential for selecting the right size for a specific application and ensuring compatibility with other components and the overall design of the circuit.
1.7 mm
MMBT2222ALT1G
ON SemiconductorATMEGA8515L-8AU
Microchip TechnologySTM32F103RBT6
STMicroelectronicsATMEGA32A-AU
Microchip TechnologyATXMEGA128A1U-AU
Microchip TechnologySTM32F407VET6
STMicroelectronicsSTM32F405RGT6
STMicroelectronicsSTM32F103VBT6
STMicroelectronicsPIC18F46K20-I/PT
Microchip TechnologySTM8S003F3U6TR
STMicroelectronics