ON Semiconductor MMBFJ305
ON Semiconductor MMBFJ305
MMBFJ305 Outline Dimensions_1
feed

ON Semiconductor MMBFJ305

Manufacturer No:

MMBFJ305

Manufacturer:

ON Semiconductor

Utmel No:

1807-MMBFJ305

Package:

TO-236-3, SC-59, SOT-23-3

Datasheet:

MMBFJ305

ECAD Model:

Description:

Trans JFET N-CH 3-Pin SOT-23 T/R

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 96740

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
MMBFJ305 information

Specifications
Documents & Media
Product Details
Product Comparison
ON Semiconductor MMBFJ305 technical specifications, attributes, parameters and parts with similar specifications to ON Semiconductor MMBFJ305.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    LAST SHIPMENTS (Last Updated: 1 week ago)
  • Factory Lead Time
    7 Weeks
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-236-3, SC-59, SOT-23-3
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Number of Pins
    3
  • Weight
    30mg
  • Transistor Element Material

    The "Transistor Element Material" parameter in electronic components refers to the material used to construct the transistor within the component. Transistors are semiconductor devices that amplify or switch electronic signals and are a fundamental building block in electronic circuits. The material used for the transistor element can significantly impact the performance and characteristics of the component. Common materials used for transistor elements include silicon, germanium, and gallium arsenide, each with its own unique properties and suitability for different applications. The choice of transistor element material is crucial in designing electronic components to meet specific performance requirements such as speed, power efficiency, and temperature tolerance.

    SILICON
  • Number of Elements
    1
  • Voltage Rated

    RATED voltage is the voltage on the nameplate - the "design point" for maximum power throughput and safe thermal operation.

    30V
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C~150°C TJ
  • Published
    2014
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Tin (Sn)
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8541.21.00.95
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    225mW
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    8mA
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    30
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    MMBFJ305
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Single
  • Operating Mode

    A phase of operation during the operation and maintenance stages of the life cycle of a facility.

    DEPLETION MODE
  • FET Type

    "FET Type" refers to the type of Field-Effect Transistor (FET) being used in an electronic component. FETs are three-terminal semiconductor devices that can be classified into different types based on their construction and operation. The main types of FETs include Metal-Oxide-Semiconductor FETs (MOSFETs), Junction FETs (JFETs), and Insulated-Gate Bipolar Transistors (IGBTs).Each type of FET has its own unique characteristics and applications. MOSFETs are commonly used in digital circuits due to their high input impedance and low power consumption. JFETs are often used in low-noise amplifiers and switching circuits. IGBTs combine the high input impedance of MOSFETs with the high current-carrying capability of bipolar transistors, making them suitable for high-power applications like motor control and power inverters.When selecting an electronic component, understanding the FET type is crucial as it determines the device's performance and suitability for a specific application. It is important to consider factors such as voltage ratings, current handling capabilities, switching speeds, and power dissipation when choosing the right FET type for a particular circuit design.

    N-Channel
  • Transistor Application

    In the context of electronic components, the parameter "Transistor Application" refers to the specific purpose or function for which a transistor is designed and used. Transistors are semiconductor devices that can amplify or switch electronic signals and are commonly used in various electronic circuits. The application of a transistor can vary widely depending on its design and characteristics, such as whether it is intended for audio amplification, digital logic, power control, or radio frequency applications. Understanding the transistor application is important for selecting the right type of transistor for a particular circuit or system to ensure optimal performance and functionality.

    AMPLIFIER
  • Drain to Source Voltage (Vdss)

    The Drain to Source Voltage (Vdss) is a key parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the maximum voltage that can be applied between the drain and source terminals of the FET without causing damage to the component. Exceeding this voltage limit can lead to breakdown and potentially permanent damage to the device.Vdss is an important specification to consider when designing or selecting components for a circuit, as it determines the operating range and reliability of the FET. It is crucial to ensure that the Vdss rating of the component is higher than the maximum voltage expected in the circuit to prevent failures and ensure proper functionality.In summary, the Drain to Source Voltage (Vdss) is a critical parameter that defines the maximum voltage tolerance of a FET component and plays a significant role in determining the overall performance and reliability of electronic circuits.

    15V
  • Continuous Drain Current (ID)

    Continuous Drain Current (ID) is a key parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the maximum current that can flow continuously through the drain terminal of the FET without causing damage to the component. This parameter is crucial for determining the power handling capability of the FET and is specified by the manufacturer in the component's datasheet. Designers must ensure that the actual operating current does not exceed the specified Continuous Drain Current to prevent overheating and potential failure of the component.

    1nA
  • Gate to Source Voltage (Vgs)

    The Gate to Source Voltage (Vgs) is a crucial parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the voltage difference between the gate and source terminals of the FET. This voltage determines the conductivity of the FET and controls the flow of current through the device. By varying the Vgs, the FET can be switched on or off, allowing for precise control of electronic circuits. Understanding and properly managing the Vgs is essential for ensuring the reliable and efficient operation of FET-based circuits.

    -30V
  • FET Technology

    Field-Effect Transistor (FET) technology is a type of semiconductor device commonly used in electronic components such as transistors and integrated circuits. FETs operate by controlling the flow of current through a semiconductor channel using an electric field. There are several types of FETs, including Metal-Oxide-Semiconductor FETs (MOSFETs) and Junction FETs (JFETs), each with its own characteristics and applications. FET technology offers advantages such as high input impedance, low power consumption, and fast switching speeds, making it suitable for a wide range of electronic devices and circuits. Overall, FET technology plays a crucial role in modern electronics by enabling efficient and reliable signal processing and amplification.

    METAL-OXIDE SEMICONDUCTOR
  • Current - Drain (Idss) @ Vds (Vgs=0)

    The parameter "Current - Drain (Idss) @ Vds (Vgs=0)" in electronic components refers to the maximum drain current that flows through the device when the gate-source voltage (Vgs) is zero. This parameter is typically specified for field-effect transistors (FETs) and is an important characteristic that indicates the device's maximum current-carrying capacity in the off state. It helps in determining the saturation current of the FET and is crucial for designing circuits where high current handling capability is required. Manufacturers provide this parameter in the datasheet of the component to assist engineers and designers in selecting the appropriate component for their applications.

    8mA @ 15V
  • Voltage - Cutoff (VGS off) @ Id

    Voltage - Cutoff (VGS off) @ Id refers to the gate-source voltage at which a field-effect transistor (FET) or similar device ceases to conduct, effectively turning it off. This parameter indicates the threshold voltage that separates the conducting state from the cutoff state for a specified drain current (Id). It is crucial for determining the operating characteristics of the device in various applications, ensuring efficient switching and control in electronic circuits.

    500mV @ 1nA
  • Voltage - Breakdown (V(BR)GSS)

    Voltage - Breakdown (V(BR)GSS) is a parameter used to describe the maximum gate-source voltage that can be applied to a field-effect transistor (FET) without causing a breakdown in the gate-source junction. This parameter is crucial in determining the safe operating limits of the FET and helps prevent damage to the component. When the gate-source voltage exceeds the breakdown voltage, it can lead to a sudden increase in current flow and potentially damage the FET. Therefore, understanding and adhering to the specified V(BR)GSS value is essential for proper functioning and reliability of electronic circuits utilizing FETs.

    30V
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
0 Similar Products Remaining
Download datasheets and manufacturer documentation for ON Semiconductor MMBFJ305.

MMBFJ305 Description


The ONSEMI MMBFJ305 is an N-Channel RF Amplifier designed for electronic switching applications such as low On Resistance analogue switching. Sourced from Process 50.



MMBFJ305 Features


  • Pb-free Halide free

  • SOT-23-3 Package

  • Tape and Reel Typ.

  • Temperature: 260℃



MMBFJ305 Applications


  • General Usage 

  • Many different applications


The three parts on the right have similar specifications to ON Semiconductor & MMBFJ305.
MMBFJ305 Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "MMBFJ305" in ON Semiconductor MMBFJ305.
  • Part Number
  • Manufacturer
  • Package
  • Description