STMicroelectronics STGP40V60F
STMicroelectronics STGP40V60F
STGx40V60F Outline Dimensions_1
STGx40V60F Outline Dimensions_2
STGx40V60F Outline Dimensions_3
feed

STMicroelectronics STGP40V60F

Manufacturer No:

STGP40V60F

Manufacturer:

STMicroelectronics

Utmel No:

2381-STGP40V60F

Package:

TO-220-3

Datasheet:

STGx40V60F

ECAD Model:

Description:

IGBT 600V 80A 283W TO220AB

Quantity:

Unit Price: $2.200000

Ext Price: $2.20

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 4000

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $2.200000

    $2.20

  • 10

    $2.075472

    $20.75

  • 100

    $1.957992

    $195.80

  • 500

    $1.847162

    $923.58

  • 1000

    $1.742606

    $1,742.61

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
STGP40V60F information

Specifications
Documents & Media
Product Details
Product Comparison
STMicroelectronics STGP40V60F technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics STGP40V60F.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 8 months ago)
  • Factory Lead Time
    20 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-220-3
  • Number of Pins
    3
  • Collector-Emitter Breakdown Voltage
    600V
  • Collector-Emitter Saturation Voltage
    2.35V
  • Test Conditions
    400V, 40A, 10 Ω, 15V
  • Turn Off Delay Time

    It is the time from when Vgs drops below 90% of the gate drive voltage to when the drain current drops below 90% of the load current. It is the delay before current starts to transition in the load, and depends on Rg. Ciss.

    208 ns
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C~175°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    283W
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    STGP40
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Single
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    283W
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    Standard
  • Turn On Delay Time

    Turn-on delay, td(on), is the time taken to charge the input capacitance of the device before drain current conduction can start.

    52 ns
  • Collector Emitter Voltage (VCEO)

    Collector-Emitter Voltage (VCEO) is a key parameter in electronic components, particularly in transistors. It refers to the maximum voltage that can be applied between the collector and emitter terminals of a transistor while the base terminal is open or not conducting. Exceeding this voltage limit can lead to breakdown and potential damage to the transistor. VCEO is crucial for ensuring the safe and reliable operation of the transistor within its specified limits. Designers must carefully consider VCEO when selecting transistors for a circuit to prevent overvoltage conditions that could compromise the performance and longevity of the component.

    600V
  • Max Collector Current

    Max Collector Current is a parameter used to specify the maximum amount of current that can safely flow through the collector terminal of a transistor or other electronic component without causing damage. It is typically expressed in units of amperes (A) and is an important consideration when designing circuits to ensure that the component operates within its safe operating limits. Exceeding the specified max collector current can lead to overheating, degradation of performance, or even permanent damage to the component. Designers must carefully consider this parameter when selecting components and designing circuits to ensure reliable and safe operation.

    80A
  • Vce(on) (Max) @ Vge, Ic

    The parameter "Vce(on) (Max) @ Vge, Ic" in electronic components refers to the maximum voltage drop across the collector-emitter junction of a power transistor when it is in the on-state. This parameter is specified at a certain gate-emitter voltage (Vge) and collector current (Ic). It indicates the maximum voltage that can be sustained across the collector-emitter terminals while the transistor is conducting current. This parameter is important for determining the power dissipation and efficiency of the transistor in a circuit, as well as for ensuring proper operation and reliability of the component.

    2.3V @ 15V, 40A
  • IGBT Type

    IGBT Type refers to the specific classification of Insulated Gate Bipolar Transistors, which are semiconductor devices used for switching and amplifying electronic signals. IGBT types can vary based on their voltage ratings, current handling capabilities, switching speeds, and packaging configurations. Different IGBT types are designed to optimize performance in various applications, including motor drives, power inverters, and high-frequency switching circuits. Understanding the IGBT type is crucial for selecting the appropriate component for a particular electronic design or application.

    Trench Field Stop
  • Gate Charge

    the amount of charge that needs to be injected into the gate electrode to turn ON (drive) the MOSFET.

    226nC
  • Current - Collector Pulsed (Icm)

    The parameter "Current - Collector Pulsed (Icm)" in electronic components refers to the maximum allowable collector current that the component can handle when operating in a pulsed mode. This parameter is crucial for devices such as transistors and power amplifiers that may experience short bursts of high current during operation. Exceeding the specified Icm rating can lead to overheating, device failure, or even permanent damage. Designers must carefully consider this parameter when selecting components to ensure reliable and safe operation within the specified limits.

    160A
  • Td (on/off) @ 25°C

    The parameter "Td (on/off) @ 25°C" in electronic components refers to the thermal resistance between the device junction and the ambient environment when the device is in the on or off state at a temperature of 25°C. This parameter helps to quantify how efficiently the device can dissipate heat generated during operation. A lower thermal resistance value indicates better heat dissipation capabilities, which is crucial for maintaining the device's performance and reliability. Designers use this parameter to ensure proper thermal management and prevent overheating issues that can affect the component's functionality and lifespan.

    52ns/208ns
  • Switching Energy

    Switching energy is a parameter used to describe the amount of energy consumed by an electronic component during the process of switching from one state to another. It is typically measured in joules and is an important consideration in the design and evaluation of electronic devices, especially in terms of power efficiency and heat generation. Switching energy is influenced by factors such as the operating frequency, voltage levels, and the specific characteristics of the component itself. Minimizing switching energy is crucial for improving the overall performance and reliability of electronic systems.

    456μJ (on), 411μJ (off)
  • Height
    15.75mm
  • Length
    10.4mm
  • Width
    4.6mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for STMicroelectronics STGP40V60F.

STGP40V60F Description


This IGBT gadget was created employing a cutting-edge, exclusive trench gate field stop construction. The component is a part of the V series of IGBTs, which offer the best conduction and switching loss trade-offs for maximizing the efficiency of very high frequency converters. Additionally, safer paralleling operation is produced by a positive VCE(sat) temperature coefficient and a very narrow parameter distribution.



STGP40V60F Features


  • Maximum junction temperature: TJ = 175 °C

  • Tail-less switching off

  • VCE(sat) = 1.8 V (typ.) @ IC = 40 A

  • Tight parameters distribution

  • Safe paralleling

  • Low thermal resistance



STGP40V60F Applications


  • Photovoltaic inverters

  • Uninterruptible power supply

  • Welding

  • Power factor correction

  • Very high frequency converters


The three parts on the right have similar specifications to STMicroelectronics & STGP40V60F.
STGP40V60F Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "STGP40V60F" in STMicroelectronics STGP40V60F.
  • Part Number
  • Manufacturer
  • Package
  • Description