BMM150 Sensor: Datasheet, Pinout and Applications

UTMEL

Published: 27 August 2021 | Last Updated: 27 August 2021

3162

BMM150

BMM150

Bosch Sensortec

BMM150 Series 3.6 V Surface Mount Three-Axis Geomagnetic Sensor - WLCSP-12

Purchase Guide

BMM150 Series 3.6 V Surface Mount Three-Axis Geomagnetic Sensor - WLCSP-12

The BMM150 is a standalone geomagnetic sensor for consumer market applications. This article mainly covers datasheet, pinout, applications, features, and other details about BMM150.

BMM150 Pinout

bmm150 pinout.png

bmm150 pin description.png

BMM150 CAD Model

Symbol

bmm150 symbol.png

Footprint

bmm150 footprint.png

3D Model

bmm150 3d model.png

BMM150 Description

The BMM150 is a standalone geomagnetic sensor for consumer market applications. It allows measurements of the magnetic field in three perpendicular axes. Based on Bosch’s proprietary FlipCore technology, the performance and features of BMM150 are carefully tuned and perfectly match the demanding requirements of all 3-axis mobile applications such as electronic compass, navigation, or augmented reality.


Specifications

Bosch Sensortec BMM150 technical specifications, attributes, parameters and parts with similar specifications to Bosch Sensortec BMM150.
  • Type
    Parameter
  • Factory Lead Time
    14 Weeks
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    12-XFBGA, WLCSP
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Published
    2012
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    12
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    1.62V~3.6V
  • Current - Supply (Max)

    The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.

    20mA
  • Body Length or Diameter

    Body length or diameter in electronic components refers to the physical dimensions of a component's housing, typically measured in millimeters or inches. It indicates the size of the component that affects its fit within a circuit board or system. This parameter is crucial for ensuring compatibility with the design and mounting of electronic devices. It can impact heat dissipation, electrical performance, and overall assembly efficiency. Accurate measurement of body length or diameter is essential for proper component selection and placement in electronic applications.

    1.56mm
  • Body Breadth

    Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.

    1.56 mm
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    I2C, SPI
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    3.6V
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    SOLDER
  • Bandwidth

    In electronic components, "Bandwidth" refers to the range of frequencies over which the component can effectively operate or pass signals without significant loss or distortion. It is a crucial parameter for devices like amplifiers, filters, and communication systems. The bandwidth is typically defined as the difference between the upper and lower frequencies at which the component's performance meets specified criteria, such as a certain level of signal attenuation or distortion. A wider bandwidth indicates that the component can handle a broader range of frequencies, making it more versatile for various applications. Understanding the bandwidth of electronic components is essential for designing and optimizing circuits to ensure proper signal transmission and reception within the desired frequency range.

    10Hz
  • Resolution

    Resolution in electronic components refers to the smallest increment of measurement or change that can be detected or represented by the component. It is a crucial specification in devices such as sensors, displays, and converters, as it determines the level of detail or accuracy that can be achieved. For example, in a digital camera, resolution refers to the number of pixels that make up an image, with higher resolution indicating a greater level of detail. In analog-to-digital converters, resolution is the number of discrete values that can be represented in the digital output, determining the precision of the conversion process. Overall, resolution plays a significant role in determining the performance and capabilities of electronic components in various applications.

    13 b
  • Linearity

    In electronic components, linearity refers to the relationship between the input and output signals of the component. A component is said to be linear if its output is directly proportional to its input over a specified range. In other words, when the input signal changes, the output signal changes in a consistent and predictable manner without introducing distortion or non-linear effects.Linearity is an important parameter in electronic components such as amplifiers, filters, and sensors, as it determines the accuracy and fidelity of signal processing. Non-linearities in components can lead to signal distortion, harmonic generation, and other undesirable effects that can degrade the performance of electronic systems.Engineers often characterize the linearity of components by measuring parameters such as gain error, harmonic distortion, and intermodulation distortion. By ensuring that components exhibit good linearity characteristics, designers can create electronic systems that accurately process signals and faithfully reproduce the desired output.

    1 %
  • Sensing Method

    The sensing method in electronic components refers to the technique or mechanism used to detect and measure physical phenomena such as temperature, pressure, light, or motion. This includes a variety of technologies such as resistive, capacitive, inductive, and optical sensing methods. The choice of sensing method affects the accuracy, response time, and application suitability of the electronic component. It plays a crucial role in determining how effectively a device can interact with and interpret its environment.

    Hall Effect
  • Sensing Range

    The sensing range of position sensors is the displacement between the sensing face of the sensor and the approaching measurement object that triggers a signal change in the sensor.

    ±1.3mT (X,Y), ±2.5mT (Z)
  • Ambient Temperature Range High

    This varies from person to person, but it is somewhere between 68 and 77 degrees F on average. The temperature setting that is comfortable for an individual may fluctuate with humidity and outside temperature as well. The temperature of an air conditioned room can also be considered ambient temperature.

    85°C
  • Axis

    In electronic components, the parameter "Axis" typically refers to the orientation or direction along which a specific characteristic or measurement is being considered. For example, in a sensor or accelerometer, the axis may indicate the direction in which the device is measuring acceleration. In a motor or actuator, the axis may refer to the direction of movement or rotation.Understanding the axis of a component is crucial for proper installation, calibration, and operation. It helps in determining how the component will interact with other parts of a system and how its performance can be optimized. Different components may have multiple axes to consider, especially in complex systems where movement or measurements occur in multiple directions.Overall, the axis parameter provides important information about the spatial orientation or directionality of an electronic component, guiding engineers and technicians in effectively utilizing the component within a larger system.

    X, Y, Z
  • Magnetic Field Range-Min

    The parameter "Magnetic Field Range-Min" in electronic components refers to the minimum level of magnetic field strength that the component can effectively operate within without experiencing any adverse effects. This parameter is crucial for components that are sensitive to magnetic fields, such as sensors, actuators, and certain types of memory devices. Exceeding the specified minimum magnetic field range can lead to malfunctions, errors, or even permanent damage to the component. It is important to carefully consider and adhere to this parameter when designing or using electronic systems in environments where magnetic fields are present to ensure proper functionality and reliability.

    1.2 mT
  • Magnetic Field Range-Max

    The parameter "Magnetic Field Range-Max" in electronic components refers to the maximum level of magnetic field strength that the component can withstand without experiencing any adverse effects on its performance or functionality. This parameter is crucial for components that are sensitive to magnetic fields, such as sensors, actuators, and certain types of electronic circuits.Exceeding the specified maximum magnetic field range can lead to issues such as interference, distortion, or even permanent damage to the component. Manufacturers provide this information to help users understand the limitations of the component and ensure proper handling and installation to prevent any potential problems related to magnetic fields.It is important to consider the Magnetic Field Range-Max parameter when designing electronic systems or selecting components for applications where exposure to magnetic fields is a concern, to ensure reliable and stable operation of the components within their specified limits.

    2.5 mT
  • Number of Axes
    3
  • Height
    595μm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining

BMM150 Block Diagram

bmm150 block diagram.png

BMM150 Features

BMM150 is a low-power and low-noise 3-axis digital geo-magnetic sensor to be used in eCompass applications. The 12- pin wafer level chip scale package (WLCSP) with a footprint of only 1.56 x 1.56 mm² and 0.60 mm height provides the highest design flexibility to the developer of mobile devices.


BMM150 Applications

  • Magnetic heading information

  • Tilt-compensated electronic compass for map rotation, navigation and augmented reality

  • Gyroscope calibration in 9-DoF applications for mobile devices

  • In-door navigation, e.g. step counting in combination accelerometer

  • Gaming


BMM150 Application Circuit

bmm150 application circuit.png

BMM150 Outline Dimension

bmm150 outline dimension1.png

bmm150 outline dimension2.png

bmm150 outline dimension3.png

BMM150 Manufacturer

Devoted to consumer electronics worldwide, Bosch Sensortec (fully owned by Robert Bosch GmbH as a subsidiary firm) provides a portfolio of MEMS(micro-electro-mechanical systems) based solutions and chips for applications in wearable devices, smartphones, tablets, and a number of products in the field of IoT(Internet of Things). With their great effort, more and more mobile devices are able to sense the world.


Trend Analysis

Datasheet PDF

Download datasheets and manufacturer documentation for Bosch Sensortec BMM150.
Frequently Asked Questions

What is BMM150?

BMM150 is a low-power and low-noise 3-axis digital geomagnetic sensor to be used in compass applications. Applications like virtual reality or gaming on mobile devices such as mobile phones, tablet PCs, or portable media players require 9-axis inertial sensing including magnetic heading information.

What is BMM150 used for?

The low-power, low-noise BMM150 is a 3-axis digital geomagnetic sensor that perfectly matches the requirements of compass applications. By means of sensor data fusion software tailored to the hardware, the BMM150 provides absolute spatial orientation and motion vectors with high accuracy and dynamics.

How does BMM150 work?

The BMM150 is a standalone geomagnetic sensor for consumer market applications. An evaluation circuitry (ASIC) converts the output of the geomagnetic sensor to digital results which can be read out over the industry-standard digital interfaces (SPI and I2C).
BMM150

Bosch Sensortec

In Stock

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More