Nexperia USA Inc. BUK9510-100B,127
Nexperia USA Inc. BUK9510-100B,127
feed

Nexperia USA Inc. BUK9510-100B,127

Manufacturer No:

BUK9510-100B,127

Manufacturer:

Nexperia USA Inc.

Utmel No:

1729-BUK9510-100B,127

Package:

TO-220-3

Datasheet:

BUK9510-100B

ECAD Model:

Description:

N-Channel Tube 9.7m Ω @ 25A, 10V ±15V 11045pF @ 25V 86nC @ 5V TO-220-3

Quantity:

Unit Price: $0.947351

Ext Price: $0.95

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 10100

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.947351

    $0.95

  • 10

    $0.893727

    $8.94

  • 100

    $0.843139

    $84.31

  • 500

    $0.795414

    $397.71

  • 1000

    $0.750391

    $750.39

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
BUK9510-100B,127 information

Specifications
Documents & Media
Product Details
Product Comparison
Nexperia USA Inc. BUK9510-100B,127 technical specifications, attributes, parameters and parts with similar specifications to Nexperia USA Inc. BUK9510-100B,127.
  • Type
    Parameter
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-220-3
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Number of Pins
    3
  • Transistor Element Material

    The "Transistor Element Material" parameter in electronic components refers to the material used to construct the transistor within the component. Transistors are semiconductor devices that amplify or switch electronic signals and are a fundamental building block in electronic circuits. The material used for the transistor element can significantly impact the performance and characteristics of the component. Common materials used for transistor elements include silicon, germanium, and gallium arsenide, each with its own unique properties and suitability for different applications. The choice of transistor element material is crucial in designing electronic components to meet specific performance requirements such as speed, power efficiency, and temperature tolerance.

    SILICON
  • Current - Continuous Drain (Id) @ 25℃
    75A Tc
  • Drive Voltage (Max Rds On, Min Rds On)
    4.5V 10V
  • Number of Elements
    1
  • Power Dissipation (Max)
    300W Tc
  • Turn Off Delay Time

    It is the time from when Vgs drops below 90% of the gate drive voltage to when the drain current drops below 90% of the load current. It is the delay before current starts to transition in the load, and depends on Rg. Ciss.

    250 ns
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C~175°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    TrenchMOS™
  • Published
    2017
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Pin Count

    a count of all of the component leads (or pins)

    3
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Single
  • Operating Mode

    A phase of operation during the operation and maintenance stages of the life cycle of a facility.

    ENHANCEMENT MODE
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    300W
  • Case Connection

    Case Connection refers to the method by which an electronic component's case or housing is connected to the electrical circuit. This connection is important for grounding purposes, mechanical stability, and heat dissipation. The case connection can vary depending on the type of component and its intended application. It is crucial to ensure a secure and reliable case connection to maintain the overall performance and safety of the electronic device.

    DRAIN
  • Turn On Delay Time

    Turn-on delay, td(on), is the time taken to charge the input capacitance of the device before drain current conduction can start.

    60 ns
  • FET Type

    "FET Type" refers to the type of Field-Effect Transistor (FET) being used in an electronic component. FETs are three-terminal semiconductor devices that can be classified into different types based on their construction and operation. The main types of FETs include Metal-Oxide-Semiconductor FETs (MOSFETs), Junction FETs (JFETs), and Insulated-Gate Bipolar Transistors (IGBTs).Each type of FET has its own unique characteristics and applications. MOSFETs are commonly used in digital circuits due to their high input impedance and low power consumption. JFETs are often used in low-noise amplifiers and switching circuits. IGBTs combine the high input impedance of MOSFETs with the high current-carrying capability of bipolar transistors, making them suitable for high-power applications like motor control and power inverters.When selecting an electronic component, understanding the FET type is crucial as it determines the device's performance and suitability for a specific application. It is important to consider factors such as voltage ratings, current handling capabilities, switching speeds, and power dissipation when choosing the right FET type for a particular circuit design.

    N-Channel
  • Transistor Application

    In the context of electronic components, the parameter "Transistor Application" refers to the specific purpose or function for which a transistor is designed and used. Transistors are semiconductor devices that can amplify or switch electronic signals and are commonly used in various electronic circuits. The application of a transistor can vary widely depending on its design and characteristics, such as whether it is intended for audio amplification, digital logic, power control, or radio frequency applications. Understanding the transistor application is important for selecting the right type of transistor for a particular circuit or system to ensure optimal performance and functionality.

    SWITCHING
  • Rds On (Max) @ Id, Vgs

    Rds On (Max) @ Id, Vgs refers to the maximum on-resistance of a MOSFET or similar transistor when it is fully turned on or in the saturation region. It is specified at a given drain current (Id) and gate-source voltage (Vgs). This parameter indicates how much resistance the component will offer when conducting, impacting power loss and efficiency in a circuit. Lower Rds On values are preferred for better performance in switching applications.

    9.7m Ω @ 25A, 10V
  • Vgs(th) (Max) @ Id

    The parameter "Vgs(th) (Max) @ Id" in electronic components refers to the maximum gate-source threshold voltage at a specified drain current (Id). This parameter is commonly found in field-effect transistors (FETs) and is used to define the minimum voltage required at the gate terminal to turn on the transistor and allow current to flow from the drain to the source. The maximum value indicates the upper limit of this threshold voltage under specified operating conditions. It is an important parameter for determining the proper biasing and operating conditions of the FET in a circuit to ensure proper functionality and performance.

    2V @ 1mA
  • Input Capacitance (Ciss) (Max) @ Vds

    The parameter "Input Capacitance (Ciss) (Max) @ Vds" in electronic components refers to the maximum input capacitance measured at a specific drain-source voltage (Vds). Input capacitance is a crucial parameter in field-effect transistors (FETs) and power MOSFETs, as it represents the total capacitance at the input terminal of the device. This capacitance affects the device's switching speed and overall performance, as it influences the time required for charging and discharging during operation. Manufacturers provide this parameter to help designers understand the device's input characteristics and make informed decisions when integrating it into a circuit.

    11045pF @ 25V
  • Gate Charge (Qg) (Max) @ Vgs

    Gate Charge (Qg) (Max) @ Vgs refers to the maximum amount of charge that must be supplied to the gate of a MOSFET or similar device to fully turn it on, measured at a specific gate-source voltage (Vgs). This parameter is crucial for understanding the switching characteristics of the device, as it influences the speed at which the gate can charge and discharge. A higher gate charge value often implies slower switching speeds, which can impact the efficiency of high-frequency applications. This parameter is typically specified in nanocoulombs (nC) in the component's datasheet.

    86nC @ 5V
  • Rise Time

    In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value.

    110ns
  • Vgs (Max)

    Vgs (Max) refers to the maximum gate-source voltage that can be applied to a field-effect transistor (FET) without causing damage to the component. This parameter is crucial in determining the safe operating limits of the FET and helps prevent overvoltage conditions that could lead to device failure. Exceeding the specified Vgs (Max) rating can result in breakdown of the gate oxide layer, leading to permanent damage to the FET. Designers must ensure that the applied gate-source voltage does not exceed the maximum rating to ensure reliable and long-term operation of the electronic component.

    ±15V
  • Fall Time (Typ)

    Fall Time (Typ) is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in an electronic component, such as a transistor or an integrated circuit. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the performance of the component in digital circuits. A shorter fall time indicates faster switching speeds and can result in improved overall circuit performance, such as reduced power consumption and increased data transmission rates. Designers often consider the fall time specification when selecting components for their circuits to ensure proper functionality and efficiency.

    94 ns
  • Continuous Drain Current (ID)

    Continuous Drain Current (ID) is a key parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the maximum current that can flow continuously through the drain terminal of the FET without causing damage to the component. This parameter is crucial for determining the power handling capability of the FET and is specified by the manufacturer in the component's datasheet. Designers must ensure that the actual operating current does not exceed the specified Continuous Drain Current to prevent overheating and potential failure of the component.

    75A
  • JEDEC-95 Code

    JEDEC-95 Code is a standardized identification system used by the Joint Electron Device Engineering Council to categorize and describe semiconductor devices. This code provides a unique alphanumeric identifier for various memory components, ensuring consistency in documentation and communication across the electronics industry. The format includes information about the type, capacity, and technology of the device, facilitating easier specification and understanding for manufacturers and engineers.

    TO-220AB
  • Gate to Source Voltage (Vgs)

    The Gate to Source Voltage (Vgs) is a crucial parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the voltage difference between the gate and source terminals of the FET. This voltage determines the conductivity of the FET and controls the flow of current through the device. By varying the Vgs, the FET can be switched on or off, allowing for precise control of electronic circuits. Understanding and properly managing the Vgs is essential for ensuring the reliable and efficient operation of FET-based circuits.

    15V
  • Max Dual Supply Voltage

    A Dual power supply is a regular direct current power supply. It can provide a positive as well as negative voltage. It ensures stable power supply to the device as well as it helps to prevent system damage.

    100V
  • Drain to Source Breakdown Voltage

    Drain to Source Breakdown Voltage, often denoted as V(BR) D-S, is a critical parameter in electronic components, particularly in field-effect transistors (FETs) and metal-oxide-semiconductor FETs (MOSFETs). It represents the maximum voltage that can be applied between the drain and source terminals of the device without causing breakdown or permanent damage. Exceeding this voltage can lead to excessive current flow, resulting in thermal failure or destruction of the component. It is essential for ensuring reliable operation in circuit designs where high voltages may be encountered.

    100V
  • Avalanche Energy Rating (Eas)

    Avalanche Energy Rating (Eas) is a parameter that quantifies the energy handling capability of a semiconductor device, particularly during avalanche breakdown conditions. It indicates the maximum energy that the device can withstand without being damaged when it experiences an avalanche effect. This rating is crucial for applications where devices might be exposed to over-voltage or other conditions that could cause unintended breakdown, ensuring reliability and longevity in operation. The Eas value helps designers select appropriate components for circuits that may encounter transient events.

    629 mJ
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Nexperia USA Inc. BUK9510-100B,127.

BUK9510-100B,127 Overview

Single MOSFETs transistor is called "avalanche break down", and avalanche energy is applied to MOSFETs, and Single MOSFETs transistor has a rating of 629 mJ.With either input grounded, the input capacitance parameter, CI, represents the capacitance between the input terminals of the op amp. This device has a maximum input capacitance of 11045pF @ 25V.A device's drain current is its maximum continuous current, and this device has a continuous drain current (ID) of 75A.With a drain-source breakdown voltage of 100V and a drain-source current flow rate of 1, this device has a drain-source breakdown voltage of 100V.Input capacitance charging takes time before drain current conduction begins, so the turn-on delay time is 60 ns.Single MOSFETs transistor is the voltage that falls across the gate-source terminal of a FET transistor that is called the gate-source voltage, VGS.This device supports dual supply voltages maximally powered by 100V.

BUK9510-100B,127 Features

the avalanche energy rating (Eas) is 629 mJ
a continuous drain current (ID) of 75A
a drain-to-source breakdown voltage of 100V voltage

BUK9510-100B,127 Applications

There are a lot of Nexperia USA Inc.
BUK9510-100B,127 applications of single MOSFETs transistors.


  • Lighting
  • Uninterruptible Power Supply
  • AC-DC Power Supply
  • Synchronous Rectification for ATX 1 Server I Telecom PSU
  • Motor drives and Uninterruptible Power Supplies
  • Micro Solar Inverter
  • DC/DC converters
  • Power Tools
  • Motor Drives and Uninterruptible Power Supples
  • Synchronous Rectification
The three parts on the right have similar specifications to Nexperia USA Inc. & BUK9510-100B,127.
BUK9510-100B,127 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
The following parts include "BUK9510-100B,127" in Nexperia USA Inc. BUK9510-100B,127.
  • Part Number
  • Manufacturer
  • Package
  • Description