TLP250 Photocoupler: Schematic, Pinout and Datasheet

Sophie

Published: 11 September 2021 | Last Updated: 11 September 2021

13895

TLP250H(F)

TLP250H(F)

Toshiba Semiconductor and Storage

Optocoupler Logic-Out Totem-Pole DC-IN 1-CH 8-Pin DIP

Purchase Guide

Optocoupler Logic-Out Totem-Pole DC-IN 1-CH 8-Pin DIP

Hi, fellas. I am Rose. Welcome back to my post about electronic components. TLP250 is an isolated IGBT/Mosfet driver IC. This article mainly introduces schematic, pinout, datasheet, and other detailed information about Toshiba Semiconductor Storage TLP250.

This video will show you useing TLP250 to build a powerful sine inverter.

Make PCB 2000W Inverter SINE 48V TLP250 - Part1

TLP250 Description

TLP250 is an isolated 8-pin IGBT/Mosfet driver IC.  The input side consists of a GaAlAs light-emitting diode. The output side gets a drive signal through an integrated photodetector. Therefore, the main feature is electrical isolation between low and high power circuits. It transfers electrical signals optically via light. Users can use it to drive the gate terminals of high voltage switches in both configurations such as high side and low side drive. 


TLP250 Pinout

TLP250 Pinout.jpg

TLP250 Pinout

Pin NumberPin NameDescription
1N.C.No Connection – Not used
2AnodeAnode terminal of LED diode
3Cathode

The cathode terminal of the LED

4N.C.No Connection – Not used
5GNDConnect with Ground of power supply
6Vo(output)Output terminal
7VoOutput terminal
8VccConnect with Positive terminal of power supply

TLP250 Pin Description

TLP250 CAD Model

Symbol.png

Symbol

Footprint.png

Footprint

TLP250 3D Model.jpg

3D Model

TLP250 Features

●Operating frequency: 0-25kHz

●Input Supply voltage: 10-35 volts

●Output voltage:  10-35 volts

●Output drive current: 1.5A

●Electrical isolation voltage: 3500 VRMS

●Switching rise and fall time: 1.5μs

●Operating temperature range: -20 – 85 degrees


Specifications

Toshiba Semiconductor and Storage TLP250H(F) technical specifications, attributes, parameters and parts with similar specifications to Toshiba Semiconductor and Storage TLP250H(F).
  • Type
    Parameter
  • Factory Lead Time
    12 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    8-DIP (0.300, 7.62mm)
  • Number of Pins
    8
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~125°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2014
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    Not Applicable
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    260mW
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    10V~30V
  • Voltage - Isolation

    Voltage - Isolation is a parameter in electronic components that refers to the maximum voltage that can be safely applied between two isolated points without causing electrical breakdown or leakage. It is a crucial specification for components such as transformers, optocouplers, and capacitors that require isolation to prevent electrical interference or safety hazards. The voltage isolation rating ensures that the component can withstand the specified voltage without compromising its performance or safety. It is typically measured in volts and is an important consideration when designing circuits that require isolation between different parts of the system.

    3750Vrms
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Push-Pull, Totem Pole
  • Number of Channels
    1
  • Voltage - Forward (Vf) (Typ)

    The parameter "Voltage - Forward (Vf) (Typ)" in electronic components refers to the typical forward voltage drop across the component when it is conducting current in the forward direction. It is a crucial characteristic of components like diodes and LEDs, indicating the minimum voltage required for the component to start conducting current. The forward voltage drop is typically specified as a typical value because it can vary slightly based on factors such as temperature and manufacturing tolerances. Designers use this parameter to ensure that the component operates within its specified voltage range and to calculate power dissipation in the component.

    1.57V
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    500 ns
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    DC
  • Optoelectronic Device Type

    Optoelectronic Device Type refers to the classification of electronic components that can both detect and emit light. These devices convert electrical signals into light or vice versa, making them essential for applications such as optical communication, sensing, and display technologies. Common types of optoelectronic devices include light-emitting diodes (LEDs), photodiodes, phototransistors, and laser diodes. Understanding the optoelectronic device type is crucial for selecting the appropriate component for a specific application based on factors such as wavelength, power output, and sensitivity.

    LOGIC IC OUTPUT OPTOCOUPLER
  • Direction

    In electronic components, the parameter "Direction" refers to the orientation or alignment in which the component is designed to operate effectively. This parameter is particularly important for components such as diodes, transistors, and capacitors, which have specific polarity or orientation requirements for proper functionality. For example, diodes allow current flow in one direction only, so their direction parameter indicates the correct orientation for current flow. Similarly, polarized capacitors have a positive and negative terminal, requiring proper alignment for correct operation. Understanding and adhering to the direction parameter is crucial for ensuring the reliable and efficient performance of electronic components in a circuit.

    Unidirectional
  • Rise Time

    In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value.

    50ns
  • Fall Time (Typ)

    Fall Time (Typ) is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in an electronic component, such as a transistor or an integrated circuit. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the performance of the component in digital circuits. A shorter fall time indicates faster switching speeds and can result in improved overall circuit performance, such as reduced power consumption and increased data transmission rates. Designers often consider the fall time specification when selecting components for their circuits to ensure proper functionality and efficiency.

    50 ns
  • Rise / Fall Time (Typ)

    The parameter "Rise / Fall Time (Typ)" in electronic components refers to the time it takes for a signal to transition from a specified low level to a specified high level (rise time) or from a high level to a low level (fall time). It is typically measured in nanoseconds or picoseconds and is an important characteristic in determining the speed and performance of a component, such as a transistor or integrated circuit. A shorter rise/fall time indicates faster signal switching and can impact the overall speed and efficiency of a circuit. Designers often consider this parameter when selecting components for high-speed applications to ensure proper signal integrity and timing.

    50ns 50ns
  • Max Input Current

    Max Input Current is a parameter that specifies the maximum amount of electrical current that can safely flow into an electronic component without causing damage. It is an important consideration when designing or using electronic circuits to ensure that the component operates within its specified limits. Exceeding the maximum input current can lead to overheating, component failure, or even pose safety risks. Manufacturers provide this parameter in datasheets to help engineers and users understand the limitations of the component and ensure proper operation within the specified parameters.

    20mA
  • Propagation Delay tpLH / tpHL (Max)

    Propagation delay tpLH and tpHL refer to the time it takes for a digital signal to travel through a logic gate or other electronic component. tpLH is the maximum time delay for the output to transition from a low state to a high state, while tpHL is the maximum time delay for the output to transition from a high state to a low state. These parameters are critical for determining the speed and timing performance of digital circuits, as they impact how quickly signals can propagate through the system and affect overall operation.

    500ns, 500ns
  • Common Mode Transient Immunity (Min)

    Common Mode Transient Immunity (Min) is a parameter that measures the ability of an electronic component to withstand and reject common mode noise or interference signals. Common mode noise refers to unwanted signals that are present on both input and output lines of a component. The minimum value of Common Mode Transient Immunity indicates the minimum level of noise or interference that the component can tolerate without affecting its performance. A higher Common Mode Transient Immunity value signifies better protection against common mode noise, ensuring reliable operation of the component in noisy environments. It is an important specification to consider when designing circuits that are exposed to external disturbances or electromagnetic interference.

    40kV/μs
  • Inputs - Side 1/Side 2

    The parameter "Inputs - Side 1/Side 2" in electronic components refers to the configuration of input connections on the component. It indicates which side of the component is designated as Side 1 and which side is designated as Side 2 for input connections. This parameter is important for proper installation and connection of the component in a circuit or system. By following the specified input configuration, users can ensure that the component functions correctly and interfaces properly with other components in the circuit.

    1/0
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
0 Similar Products Remaining

TLP250 Schematic

Schematic.png

TLP250 Schematic

TLP250 Applications

●Used in Induction heating

●Used in Solar heating system

●Used in Solar inverters/ Power Inverter

●Used in Pure sine wave and modified sine wave inverters

●Used in Industrial Inverters

●Used in Air Conditioner Inverters

●Used in IGBT Gate Drivers

●Used in MOSFET Gate Drivers

●Used in Induction Cooktop and Home Appliances


TLP250 Package

Package.png

TLP250 Package

TLP250 Manufacturer

Toshiba Corporation (株式会社東芝, Kabushiki Kaisha Tōshiba, English: /təˈʃiːbə, tɒ-, toʊ-/) is a Japanese multinational conglomerate headquartered in Minato, Tokyo. Its diversified products and services include power, industrial and social infrastructure systems, elevators and escalators, electronic components, semiconductors, hard disk drives, printers, batteries, lighting, as well as IT solutions such as quantum cryptography. It was one of the biggest manufacturers of personal computers, consumer electronics, home appliances, and medical equipment. 

Datasheet PDF

Download datasheets and manufacturer documentation for Toshiba Semiconductor and Storage TLP250H(F).

Parts with Similar Specs

The three parts on the right have similar specifications to Toshiba Semiconductor and Storage & TLP250H(F).
Frequently Asked Questions

1.What is the difference between TLP521 and TLP250?

TLP521 is an optocoupler with a single NPN output, and TLP250 is an optocoupler with a dual-tube (NPN and PNP) push-pull output. This is the most important difference between them. In addition, TLP250 has only a single 8-pin single-channel package, while TLP521 There are three package types: 4-pin single-channel, 8-pin dual-channel, and 16-pin four-channel.

2.How to measure the quality of TLP250 optocoupler?

The input end of the optocoupler is a light-emitting diode, and the output end is a photosensitive triode. General multimeter resistance measurement can only estimate whether it is broken or not.
To judge whether it can be used, it is best to use a circuit test. A simple test can add a few milliamps of current to the input to see the change in resistance at the output.

3.What is the difference between TLP250 and TLP251?

TLP250 drive capability 2A maximum switching time 0.5us TLP251 drive capability 0.4A maximum switching time 1us.
TLP250H(F)

Toshiba Semiconductor and Storage

In Stock: 59400

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More