SN65HVD1781DR Transceiver: Circuit, RS-485

Sophie

Published: 28 March 2022 | Last Updated: 28 March 2022

1454

SN65HVD1781DR

SN65HVD1781DR

Texas Instruments

8 Terminations 5V 8 Pin 65HVD1781 Receivers 1 Bits 1/1 Drivers/Receivers 1 Functions

Purchase Guide

8 Terminations 5V 8 Pin 65HVD1781 Receivers 1 Bits 1/1 Drivers/Receivers 1 Functions

The SN65HVD1781DR devices are half-duplex RS-485 transceivers with three speed classes that can transmit data at 115 kbps, 1 Mbps, and 10 Mbps. Check out more details of the component.

This short video introduces the features of  SN65HVD1781DR.

Reliable SN65HVD1781DR Supplier and SN65HVD1781DR Distributor in China - Rantle East Electronic

SN65HVD1781DR Transceiver: Circuit, RS-485

The SN65HVD1781DR devices are half-duplex RS-485 transceivers with three speed classes that can transmit data at 115 kbps, 1 Mbps, and 10 Mbps. These devices have a broad common-mode operating range as well as bus-pin fault prevention up to 70 V. Each device has an active-HIGH driver and an active-LOW receiver. Disabling both the driver and the receiver results in a standby current of less than 1 A.


SN65HVD1781DR Pinout

pinout.jpg

SN65HVD1781DR CAD Model

Symbol

symbol.png

Footprint

footprint.png


3D Model

3d model.jpg


SN65HVD1781DR Features

• Bus-Pin Fault Protection to:

– > ±70 V (SN65HVD1780, SN65HVD1781)

– > ±30 V (SN65HVD1782)

• Operation With 3.3-V to 5-V Supply Range

• ±16-kV HBM Protection on Bus Pins

• Reduced Unit Load for Up to 320 Nodes

• Failsafe Receiver for Open-Circuit, Short-Circuit, and Idle-Bus Conditions

• Low Power Consumption

– Low Standby Supply Current, 1 µA Maximum

– ICC 4-mA Quiescent Current During Operation

• Pin-Compatible With Industry-Standard SN75176

• Signaling Rates of 115 kbps, 1 Mbps, and up to 10 Mbps

• Create a Custom Design using the SN65HVD178x with the WEBENCH® Power Designer


SN65HVD1781DR Functional Block Diagram

functional.png

SN65HVD1781DR Recommended Operating Conditions


MINNOMMAXUNIT
VCCSupply voltage
3.1555.5V
ViInput voltage at any bus terminal (separately or common mode)(1)-7
12V
VihHigh-level input voltage (driver, driver enable, and receiver enable inputs)2
VCCV
V|LLow-level input voltage (driver, driver enable, and receiver enable inputs)0
0.8V
VIDDifferential input voltage
-12
12V

Output current, driver-60
60mA
IOOutput current, receiver-8
8mA
RlDifferential load resistance
5460
Q
CLDifferential load capacitance
50pF


SN65HVD1780115kbps
1/tuiSignaling rateSN65HVD17811Mbps


SN65HVD178210
TaOperating free-air temperature (See Power5-V supply-40
105°C
Dissipation Characteristics)3.3-V supply-40
125
TjJunction temperature
-40
150°C


SN65HVD1781DR Equivalents

Part NumberDescriptionManufacturer
SN65HVD1786DRDRIVERS AND INTERFACES70-V Fault-Protected RS-485 with -20 to +25 common mode 8-SOIC -40 to 105Texas Instruments
ISL32435EIBZDRIVERS AND INTERFACES±40V Fault Protected, 3.3V to 5V, ±15V CMR, 1Mbps Half-Duplex RS-485/RS-422, ±15kV ESD; MSOP8, SOIC8; Temp Range: -40° to 85°CIntersil Corporation
ISL32435EIUZDRIVERS AND INTERFACES±40V Fault Protected, 3.3V to 5V, ±15V CMR, 1Mbps Half-Duplex RS-485/RS-422, ±15kV ESDRenesas Electronics Corporation
SN65HVD1786DDRIVERS AND INTERFACES70-V Fault-Protected RS-485 with -20 to +25 common mode 8-SOIC -40 to 105Texas Instruments
ILX3485DTDRIVERS AND INTERFACESLine Transceiver,IKSemicon Co Ltd
ISL32435EIBZ-T7DRIVERS AND INTERFACESLINE TRANSCEIVERIntersil Corporation
ISL32435EIUZ-TDRIVERS AND INTERFACES±40V Fault Protected, 3.3V to 5V, ±15V CMR, 1Mbps Half-Duplex RS-485/RS-422, ±15kV ESD; MSOP8, SOIC8; Temp Range: -40° to 85°CIntersil Corporation
ILX3485DDRIVERS AND INTERFACESLine Transceiver,IKSemicon Co Ltd
ISL32435EIBZ-T7ADRIVERS AND INTERFACES±40V Fault Protected, 3.3V to 5V, ±15V CMR, 1Mbps Half-Duplex RS-485/RS-422, ±15kV ESD; MSOP8, SOIC8; Temp Range: -40° to 85°CIntersil Corporation
SN65HVD1781DDRIVERS AND INTERFACES70-V Fault-Protected RS-485 Transceivers 8-SOIC -40 to 125Texas Instruments


Specifications

Texas Instruments SN65HVD1781DR technical specifications, attributes, parameters and parts with similar specifications to Texas Instruments SN65HVD1781DR.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 1 day ago)
  • Factory Lead Time
    6 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    8-SOIC (0.154, 3.90mm Width)
  • Number of Pins
    8
  • Weight
    75.891673mg
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~125°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e4
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    8
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Type
    Transceiver
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Nickel/Palladium/Gold (Ni/Pd/Au)
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    905mW
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    3.15V~5.5V
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    5V
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    65HVD1781
  • Pin Count

    a count of all of the component leads (or pins)

    8
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    2.75V
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    5V
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    RS-422, RS-485
  • Operating Supply Current

    Operating Supply Current, also known as supply current or quiescent current, is a crucial parameter in electronic components that indicates the amount of current required for the device to operate under normal conditions. It represents the current drawn by the component from the power supply while it is functioning. This parameter is important for determining the power consumption of the component and is typically specified in datasheets to help designers calculate the overall power requirements of their circuits. Understanding the operating supply current is essential for ensuring proper functionality and efficiency of electronic systems.

    6mA
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    6mA
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    200 ns
  • Data Rate

    Data Rate is defined as the amount of data transmitted during a specified time period over a network. It is the speed at which data is transferred from one device to another or between a peripheral device and the computer. It is generally measured in Mega bits per second(Mbps) or Mega bytes per second(MBps).

    1Mbps
  • Output Characteristics

    Output characteristics in electronic components refer to the relationship between the output voltage and output current across a range of input conditions. This parameter is essential for understanding how a device, such as a transistor or operational amplifier, behaves under various loads and operating points. It provides insights into the efficiency, performance, and limitations of the component, helping designers to make informed choices for circuits and applications.

    DIFFERENTIAL
  • Differential Output

    a differential output voltage in electronics is the difference between the values of two AC voltages, 180° out of phase, present at the output terminals of an amplifier when you apply a differential input voltage to the input terminals of an amplifier.

    YES
  • Output Polarity

    Output polarity in electronic components refers to the orientation of the output signal in relation to the ground or reference voltage. It indicates whether the output voltage is positive or negative with respect to the ground. Positive output polarity means the signal is higher than the ground potential, while negative output polarity signifies that the signal is lower than the ground. This characteristic is crucial for determining compatibility with other components in a circuit and ensuring proper signal processing.

    DIFFERENTIAL
  • Protocol

    In electronic components, the parameter "Protocol" refers to a set of rules and standards that govern the communication between devices. It defines the format, timing, sequencing, and error checking methods for data exchange between different components or systems. Protocols ensure that devices can understand and interpret data correctly, enabling them to communicate effectively with each other. Common examples of protocols in electronics include USB, Ethernet, SPI, I2C, and Bluetooth, each with its own specifications for data transmission. Understanding and adhering to protocols is essential for ensuring compatibility and reliable communication between electronic devices.

    RS422, RS485
  • Input Characteristics

    In electronic components, "Input Characteristics" refer to the set of specifications that describe how the component behaves in response to signals or inputs applied to it. These characteristics typically include parameters such as input voltage, input current, input impedance, input capacitance, and input frequency range. Understanding the input characteristics of a component is crucial for designing circuits and systems, as it helps ensure compatibility and proper functioning. By analyzing these parameters, engineers can determine how the component will interact with the signals it receives and make informed decisions about its use in a particular application.

    DIFFERENTIAL SCHMITT TRIGGER
  • Number of Drivers/Receivers
    1/1
  • Driver Number of Bits
    1
  • Receiver Number of Bits
    1
  • Duplex

    In the context of electronic components, "Duplex" refers to a type of communication system that allows for bidirectional data flow. It enables two devices to communicate with each other simultaneously, allowing for both sending and receiving of data at the same time. Duplex communication can be further categorized into two types: half-duplex, where data can be transmitted in both directions but not at the same time, and full-duplex, where data can be sent and received simultaneously. This parameter is crucial in networking and telecommunications systems to ensure efficient and effective data transmission between devices.

    Half
  • Receiver Hysteresis

    Receiver hysteresis is?commonly used to ensure glitch-free reception even when differential noise is present. This application report compares the noise immunity of the SN65HVD37 to similar devices available from competitors. Contents.

    50mV
  • Number of Transceivers
    1
  • Simplex/Duplex

    In electronic components, the parameter "Simplex/Duplex" refers to the type of communication or data transmission mode supported by the component. Simplex communication is a one-way communication mode where data flows only in one direction, from the sender to the receiver. This means that the sender can only transmit data, and the receiver can only receive data. On the other hand, duplex communication is a two-way communication mode where data can flow in both directions, allowing for simultaneous transmission and reception of data between two devices. Understanding whether a component supports simplex or duplex communication is important for determining how data will be exchanged between devices and ensuring compatibility in a given system.

    Half Duplex
  • Supply Voltage1-Nom

    Supply Voltage1-Nom is a parameter in electronic components that refers to the nominal or rated voltage level at which the component is designed to operate optimally. This parameter specifies the voltage level that the component requires to function correctly and efficiently. It is important to ensure that the actual supply voltage provided to the component closely matches the specified nominal voltage to prevent damage or malfunction. Deviating significantly from the nominal voltage may result in unreliable performance or even permanent damage to the component. It is crucial to adhere to the specified supply voltage range to ensure the proper functioning and longevity of the electronic component.

    5V
  • Max Junction Temperature (Tj)

    Max Junction Temperature (Tj) refers to the maximum allowable temperature at the junction of a semiconductor device, such as a transistor or integrated circuit. It is a critical parameter that influences the performance, reliability, and lifespan of the component. Exceeding this temperature can lead to thermal runaway, breakdown, or permanent damage to the device. Proper thermal management is essential to ensure the junction temperature remains within safe operating limits during device operation.

    150°C
  • Ambient Temperature Range High

    This varies from person to person, but it is somewhere between 68 and 77 degrees F on average. The temperature setting that is comfortable for an individual may fluctuate with humidity and outside temperature as well. The temperature of an air conditioned room can also be considered ambient temperature.

    125°C
  • Height
    1.75mm
  • Length
    4.9mm
  • Width
    3.91mm
  • Thickness

    Thickness in electronic components refers to the measurement of how thick a particular material or layer is within the component structure. It can pertain to various aspects, such as the thickness of a substrate, a dielectric layer, or conductive traces. This parameter is crucial as it impacts the electrical, mechanical, and thermal properties of the component, influencing its performance and reliability in electronic circuits.

    1.58mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

SN65HVD1781DR Applications

• HVAC Networks

• Security Electronics

• Building Automation

• Telecommunication Equipment

• Motion Control

• Industrial Networks


SN65HVD1781DR Typical Application Circuit

typical.png



SN65HVD1781DR Typical Application Circuit


SN65HVD1781DR Package

package.png

SN65HVD1781DR Manufacturer

Texas Instruments Incorporated (TI) is an American technology company based in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globally. It is one of the top 10 semiconductor companies worldwide based on sales volume. The company's focus is on developing analog chips and embedded processors, which account for more than 80% of its revenue. TI also produces TI digital light processing technology and education technology products including calculators, micro-controllers, and multi-core processors. The company boasts 45,000 patents around the globe as of 2016.


Trend Analysis

Parts with Similar Specs

The three parts on the right have similar specifications to Texas Instruments & SN65HVD1781DR.
Frequently Asked Questions

What is SN65HVD1781DR?

The SN65HVD1781DR devices are half-duplex RS-485 transceivers with three speed classes that can transmit data at 115 kbps, 1 Mbps, and 10 Mbps. These devices have a broad common-mode operating range as well as bus-pin fault prevention up to 70 V. Each device has an active-HIGH driver and an active-LOW receiver. Disabling both the driver and the receiver results in a standby current of less than 1 A.

What is the recommended operating temperature of the component?

-40°C~125°C.

What is the package of the device?

8-SOIC (0.154, 3.90mm Width).

What is the component’s number of pins?

8.
SN65HVD1781DR

Texas Instruments

In Stock: 30000

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More