BTA16-600B Triacs: BTA16-600B Datasheet PDF, Pinout, Circuit

Sophie

Published: 22 April 2022 | Last Updated: 22 April 2022

30520

BTA16-600BRG

BTA16-600BRG

STMicroelectronics

STMICROELECTRONICS BTA16-600BRGTriac, 600 V, 50 mA, 1 W, 1.5 V, TO-220AB, 160 A

Purchase Guide

STMICROELECTRONICS BTA16-600BRGTriac, 600 V, 50 mA, 1 W, 1.5 V, TO-220AB, 160 A

BTA16-600B is designed for high-performance full−wave ac control applications where high noise immunity and high commutating di/dt are required. This article will unlock its datasheet, pinout, circuit diagram and more details about BTA16-600B.

BTA16-600B Pinout

BTA16-600B Pinout.jpg

BTA16-600B Pinout

BTA16-600B CAD Model

Symbol

BTA16-600B Symbol.jpg

BTA16-600B Symbol

Footprint

BTA16-600B Footprint.jpg

BTA16-600B Footprint

CAD Model

BTA16-600B 3D Model.jpg

BTA16-600B 3D Model

BTA16-600B Description

The BTA16-600BRG  is a 3-pin Snubberless Insulated TRIAC  for general purpose AC switching and can be used as an ON/OFF  function. The BTA  series TRIAC  provides a voltage insulated tab by using an internal ceramic pad.

BTA16-600B Equivalent

The equivalent for BTA16-600B:

  • BTA16-600S

  • BT167-600E

BTA16-600B Feature

  • High commutation performance

  • Low thermal resistance with clip bonding

  • Medium current operation


BTA16-600B Application

  • Motor Drive & Control

  • Industrial

  • Lighting

BTA16-600B Functional Diagram

BTA16-600B Functional Diagram.jpg

BTA16-600B Functional Diagram

BTA16-600B Test Circuit

Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di-dt).jpg

Simplified Test Circuit to Measure the Critical Rate of Rising of Commutating current (di/dt)

BTA16-600B Package

BTA16-600B Package.jpg

BTA16-600B Package

BTA16-600B Manufacturer

STMicroelectronics is a global independent semiconductor company and is a leader in developing and delivering semiconductor solutions across the spectrum of microelectronics applications. An unrivaled combination of silicon and system expertise, manufacturing strength, Intellectual Property (IP) portfolio and strategic partners positions the Company at the forefront of System-on-Chip (SoC) technology and its products play a key role in enabling today's convergence trends.

Specifications

STMicroelectronics BTA16-600BRG technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics BTA16-600BRG.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 7 months ago)
  • Factory Lead Time
    11 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-220-3
  • Number of Pins
    3
  • Weight
    6.000006g
  • Number of Elements
    1
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~125°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    UL RECOGNIZED
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    600V
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    16A
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    BTA16
  • Pin Count

    a count of all of the component leads (or pins)

    3
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    Single
  • Case Connection

    Case Connection refers to the method by which an electronic component's case or housing is connected to the electrical circuit. This connection is important for grounding purposes, mechanical stability, and heat dissipation. The case connection can vary depending on the type of component and its intended application. It is crucial to ensure a secure and reliable case connection to maintain the overall performance and safety of the electronic device.

    ISOLATED
  • Max Repetitive Reverse Voltage (Vrrm)

    The Max Repetitive Reverse Voltage (Vrrm) is a crucial parameter in electronic components, particularly in diodes and transistors. It refers to the maximum voltage that can be applied across the component in the reverse direction without causing damage. This parameter is important for ensuring the proper functioning and longevity of the component in circuits where reverse voltage may be present. Exceeding the Vrrm rating can lead to breakdown and failure of the component, so it is essential to carefully consider this specification when designing or selecting components for a circuit.

    600V
  • JEDEC-95 Code

    JEDEC-95 Code is a standardized identification system used by the Joint Electron Device Engineering Council to categorize and describe semiconductor devices. This code provides a unique alphanumeric identifier for various memory components, ensuring consistency in documentation and communication across the electronics industry. The format includes information about the type, capacity, and technology of the device, facilitating easier specification and understanding for manufacturers and engineers.

    TO-220AB
  • RMS Current (Irms)

    RMS Current (Irms) refers to the Root Mean Square value of the alternating current flowing through an electronic component or circuit. It is a measure of the effective current that produces the same heating effect as the equivalent DC current. In AC circuits, the current continuously changes direction, so using the RMS value helps in calculating power dissipation and determining the component's capability to handle the current without overheating. RMS Current is crucial in selecting components like resistors, capacitors, and inductors to ensure they can safely operate within their specified current ratings.

    16A
  • Hold Current

    the minimum current which must pass through a circuit in order for it to remain in the 'ON' state.

    50mA
  • Trigger Device Type

    Trigger Device Type is a parameter in electronic components that refers to the type of device or mechanism used to initiate a specific action or function within the component. This parameter specifies the specific trigger device, such as a sensor, switch, or signal input, that is required to activate or control the operation of the component. Understanding the trigger device type is crucial for proper integration and operation of the electronic component within a larger system or circuit. By specifying the appropriate trigger device type, engineers and designers can ensure that the component functions correctly and responds to the intended input signals or conditions.

    4 QUADRANT LOGIC LEVEL TRIAC
  • Voltage - Gate Trigger (Vgt) (Max)

    Voltage - Gate Trigger (Vgt) (Max) refers to the maximum voltage level required to trigger the gate of a semiconductor device, such as a thyristor or triac, into the conductive state. When the gate receives this voltage, it initiates the device's conduction, allowing current to flow between its anode and cathode. Exceeding this voltage can lead to unwanted behavior or damage to the component, making it a critical parameter in designing circuits that utilize these devices. Understanding Vgt is essential for ensuring proper operation and reliability in electronic applications.

    1.3V
  • Current - Non Rep. Surge 50, 60Hz (Itsm)

    The parameter "Current - Non Rep. Surge 50, 60Hz (Itsm)" in electronic components refers to the maximum non-repetitive surge current that a component can withstand without damage during a single surge event at frequencies of 50Hz or 60Hz. This parameter is important for assessing the robustness and reliability of the component in handling sudden spikes or surges in current that may occur in the electrical system. It helps in determining the level of protection needed for the component to ensure its longevity and proper functioning in various operating conditions. Manufacturers provide this specification to guide engineers and designers in selecting the appropriate components for their applications based on the expected surge current levels.

    160A 168A
  • Current - Gate Trigger (Igt) (Max)

    Current - Gate Trigger (Igt) (Max) refers to the maximum gate trigger current required to activate a semiconductor device, such as a thyristor or triac. It is the minimum current that must flow into the gate terminal to ensure that the device turns on and conducts current between its anode and cathode. Exceeding this value can lead to unnecessary power consumption, while insufficient current may prevent the device from turning on effectively. This parameter is crucial for circuit design, as it influences the selection of gate driving circuits.

    50mA
  • Leakage Current (Max)

    Leakage Current (Max) is a parameter that specifies the maximum amount of current that can flow through an electronic component when it is in an off state. It represents the amount of current that leaks through the component due to imperfections in its insulation or semiconductor materials. Excessive leakage current can lead to power loss, reduced efficiency, and potential reliability issues in electronic circuits. Manufacturers provide this specification to help designers ensure that the leakage current does not exceed acceptable limits for the intended application. It is typically measured in microamps (μA) or nanoamps (nA) and is an important consideration in low-power and high-precision electronic designs.

    2mA
  • Critical Rate of Rise of Off-State Voltage-Min

    The parameter "Critical Rate of Rise of Off-State Voltage-Min" in electronic components refers to the minimum rate at which the off-state voltage of a device must rise in order to trigger a critical event, such as a breakdown or failure. This parameter is crucial for ensuring the reliable operation of the component under various conditions. It helps determine the maximum allowable rate of voltage increase that the component can withstand without experiencing detrimental effects. Manufacturers specify this parameter to guide engineers and designers in selecting and using the component within its safe operating limits to prevent damage or malfunction. Understanding and adhering to this parameter is essential for maintaining the performance and longevity of electronic devices.

    400V/us
  • Triac Type

    Triac Type refers to the classification of triacs based on their electrical characteristics and applications. Triacs are semiconductor devices that can control current flow in both directions and are commonly used in AC power control. Different types of triacs may have variations in parameters such as voltage rating, current rating, triggering method, and switching speed, making them suitable for specific applications like light dimmers, motor speed controls, and heating regulation. Understanding the triac type is crucial for selecting the appropriate component for a given circuit design.

    Standard
  • Critical Rate of Rise of Commutation Voltage-Min

    The Critical Rate of Rise of Commutation Voltage-Min is a parameter in electronic components, particularly in thyristors and power electronics. It refers to the minimum speed at which the voltage across the device's terminals can rise during the turn-off process without causing unwanted turn-on events or false triggering. This parameter is crucial for ensuring the reliable operation of the component in high-frequency applications and helps prevent damage from voltage transients that exceed safe thresholds. In essence, it defines the limits for safe voltage rise times to maintain proper device performance.

    10V/us
  • Height
    15.9mm
  • Length
    10.4mm
  • Width
    4.6mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

Datasheet PDF

Download datasheets and manufacturer documentation for STMicroelectronics BTA16-600BRG.
Frequently Asked Questions

What is the BTA16-600BRG?

Snubberless Insulated TRIAC.

How does the BTA series TRIAC provide voltage insulated tabs?

Ceramic pad.

What type of packages are the BTA16?

Through-hole or surface-mount packages.
BTA16-600BRG

STMicroelectronics

In Stock: 53015

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More