LT1084 Regulator: Pinout, Equivalent and Datasheet

Sophie

Published: 04 November 2021 | Last Updated: 04 November 2021

2483

LT1084CT#PBF

LT1084CT#PBF

Linear Technology/Analog Devices

Adjustable 2.54mm LT1084 PMIC 3 TO-220-3

Purchase Guide

Adjustable 2.54mm LT1084 PMIC 3 TO-220-3

The LT1084 is a positive adjustable Low Dropout Regulator designed to provide output current of 5A with higher efficiency than currently available devices. Furthermore, Huge range of Semiconductors, Capacitors, Resistors and IcS in stock. Welcome RFQ.

LT1084 Pinout

pinout.png

pinout

LT1084 CAD Model

PCB Symbol.png

symbol


PCB Footprint.png

footprint


3D Model 22.png

3D Model

LT1084 Overview

The LT1084 positive adjustable regulator is designed to provide 5A with higher efficiency than currently available devices. All internal circuitry is designed to operate down to 1V input-to-output differential and the dropout voltage is fully specified as a function of load current. Dropout is guaranteed at a maximum of 1.5V at maximum output current, decreasing at lower load currents. On-chip trimming adjusts the reference voltage to 1%. Current limit is also trimmed, minimizing the stress on both the regulator and power source circuitry under overload conditions. The LT1084 device is pin compatible with older 3-terminal regulators. A 10µF output capacitor is required on the new device. However, this is included in most regulator designs.

This article provides you with a basic overview of the LT1084, including its pin descriptions, features and specifications, etc., to help you quickly understand what LT1084 is.

LT1084 Features

● 3-Terminal Adjustable

● Output Current of 5A

● Operates Down to 1V Dropout

● Guaranteed Dropout Voltage at Multiple Current Levels

● Line Regulation: 0.015%

● Load Regulation: 0.1% 

●100% Thermal Limit Functional Test

● Fixed Versions Available

● Available in 3-Lead Plastic TO-220 and DD Packages

Specifications

Linear Technology/Analog Devices LT1084CT#PBF technical specifications, attributes, parameters and parts with similar specifications to Linear Technology/Analog Devices LT1084CT#PBF.
  • Type
    Parameter
  • Factory Lead Time
    8 Weeks
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-220-3
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    0°C~125°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2009
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn) - with Nickel (Ni) barrier
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    SINGLE
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Number of Functions
    1
  • Terminal Pitch

    The center distance from one pole to the next.

    2.54mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    LT1084
  • Pin Count

    a count of all of the component leads (or pins)

    3
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    R-PSFM-T3
  • Number of Outputs
    1
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Voltage - Input (Max)

    Voltage - Input (Max) is a parameter in electronic components that specifies the maximum voltage that can be safely applied to the input of the component without causing damage. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the maximum input voltage can lead to electrical overstress, which may result in permanent damage or failure of the component. It is important to carefully adhere to the specified maximum input voltage to prevent any potential issues and maintain the reliability of the electronic system.

    30V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Adjustable
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Positive
  • Voltage - Output (Min/Fixed)

    Voltage - Output (Min/Fixed) refers to the minimum fixed output voltage level that an electronic component, such as a voltage regulator or power supply, is designed to provide under specified load conditions. This parameter ensures that the device consistently delivers a reliable voltage that meets the requirements of the connected circuits or components. It is critical for applications where stable and predictable voltage is necessary for proper operation.

    1.25V
  • Number of Regulators

    A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow. The voltage regulator keeps the power level stabilized. A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow.

    1
  • Protection Features

    Protection features in electronic components refer to the built-in mechanisms or functionalities designed to safeguard the component and the overall system from various external factors or internal faults. These features are crucial for ensuring the reliability, longevity, and safety of the electronic device. Common protection features include overvoltage protection, overcurrent protection, reverse polarity protection, thermal protection, and short-circuit protection. By activating these features when necessary, the electronic component can prevent damage, malfunctions, or hazards that may arise from abnormal operating conditions or unforeseen events. Overall, protection features play a vital role in enhancing the robustness and resilience of electronic components in diverse applications.

    Over Temperature
  • Voltage Dropout (Max)

    Voltage Dropout (Max) refers to the minimum voltage difference between the input and output of a voltage regulator or linear power supply needed to maintain proper regulation. It indicates the maximum allowable voltage drop across the device for it to function effectively without dropout. If the input voltage falls below this threshold, the output voltage may drop below the specified level, leading to potential operational issues for connected components. This parameter is critical for ensuring stable and reliable power delivery in electronic circuits.

    1.5V @ 5A
  • PSRR

    PSRR stands for Power Supply Rejection Ratio. It is a measure of how well a device, such as an amplifier or a voltage regulator, can reject variations in the power supply voltage. A high PSRR value indicates that the device is able to maintain its performance even when the power supply voltage fluctuates. This parameter is important in ensuring stable and reliable operation of electronic components, especially in applications where the power supply voltage may not be perfectly regulated. A good PSRR helps to minimize noise and interference in the output signal of the device.

    75dB (120Hz)
  • Dropout Voltage1-Nom

    Dropout Voltage1-Nom is a parameter commonly found in voltage regulators and power management ICs. It refers to the minimum voltage difference required between the input voltage and the output voltage for the regulator to maintain regulation. In other words, it is the minimum voltage drop that the regulator can handle while still providing a stable output voltage. This parameter is important to consider when designing power supply circuits to ensure that the regulator can operate within its specified voltage range and maintain proper regulation under varying load conditions.

    1.3V
  • Load Regulation-Max(%)

    Load Regulation-Max(%) is a measure of how much the output voltage of a power supply or voltage regulator changes in response to variations in load current. It is expressed as a percentage of the nominal output voltage and indicates the maximum deviation from the set voltage when the load shifts from no load to full load. A lower value of load regulation signifies better performance, as it indicates that the output voltage remains stable under varying load conditions.

    0.4%
  • Input-Output Voltage Differential-Max

    Input-Output Voltage Differential-Max refers to the maximum allowable voltage difference between the input and output terminals of an electronic component, such as an operational amplifier or a voltage regulator. This parameter is crucial for ensuring the safe operation of the component, preventing damage, and maintaining performance. Exceeding this differential can lead to distortion, malfunction, or permanent failure of the device. It is essential for designers to consider this limit when integrating components into electronic circuits to achieve reliable functionality.

    25V
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining

LT1084 Functional Block Diagram

block diagram.png

block diagram

LT1084 Equivalent

      Model number                      Manufacturer                                       Description
LT1084IT#TRPBFLinear TechnologyIC VREG 1.2 V-15 V ADJUSTABLE POSITIVE LDO REGULATOR, 1.5 V DROPOUT, PSFM3, LEAD FREE, PLASTIC, TO-220, 3 PIN, Adjustable Positive Single Output LDO Regulator
LT1084IT#TRLinear TechnologyIC VREG 1.2 V-15 V ADJUSTABLE POSITIVE LDO REGULATOR, 1.5 V DROPOUT, PSFM3, PLASTIC, TO-220, 3 PIN, Adjustable Positive Single Output LDO Regulator
CS-5205A-1T3On Semiconductor1.25 V-13V ADJUSTABLE POSITIVE LDO REGULATOR, 1.25V DROPOUT, PSFM3, STRAIGHT, TO-220, 3 PIN
CLM2850AUCalogic IncAdjustable Positive LDO Regulator, 1.2V Min, 1.5V Dropout, PSFM3, PLASTIC, TO-220, 3 PIN
LT1084CP(ADJ)Semtech CorporationAdjustable Positive LDO Regulator, 1.2V Min, 1.5V Dropout, PSFM3, TO-247, 3 PIN
LT1084CTAnalog Devices IncAdjustable Positive LDO Regulator, 1.2V Min, 15V Max, 1.5V Dropout, BIPolar, PSFM3
LT1084ITAnalog Devices IncAdjustable Positive LDO Regulator, 1.2V Min, 15V Max, 1.5V Dropout, BIPolar, PSFM3
CS5205A-1GT3Cherry Semiconductor CorporationAdjustable Positive LDO Regulator, 1.25V Min, 13V Max, 1.25V Dropout, BIPolar, PSFM3, STRAIGHT, TO-220, 3 PIN
LT1084IT#PBFAnalog Devices Inc7.5A, 5A, 3A Low Dropout Positive Adjustable Regulators


Parts with Similar Specs

LT1084 Application

● High Efficiency Linear Regulators

● Post Regulators for Switching Supplies

● Constant Current Regulators

● Battery Chargers

LT1084 Package

T Package 3-Lead Plastic TO-220.png

package

LT1084 Manufacturer

As a member of the S&P 500, Linear Technology Corporation is committed to designing, manufacturing and marketing a extensive line of high performance analog integrated circuits for main companies around the world. Between the analog world and digital electronic products in communications, networks, industry, automobiles, computers, medical, instrumentation, consumer, military and aerospace systems, our products have built an important bridge for them. Our products include not only the production of power management, data conversion, signal conditioning, RF and interface ICs, μModule subsystems, but also wireless sensor network products.

Datasheet PDF

Download datasheets and manufacturer documentation for Linear Technology/Analog Devices LT1084CT#PBF.

Trend Analysis

Frequently Asked Questions

What is the essential property of the LT1084?

The LT1084 is a positive adjustable Low Dropout Regulator designed to provide output current of 5A with higher efficiency than currently available devices.

Is the LT1084 device compatible with the old 3-terminal regulator pins?

The LT1084 device is pin compatible with older 3-terminal regulator. 

Does the LT1084 series 3-terminal adjustable regulators provide the protection expected in high-performance voltage regulators?

The LT1084 family of 3-terminal adjustable regulators is easy to use and has all the protection features that are expected in high performance voltage regulators. They are short-circuit protected, and have safe area protection as well as thermal shutdown to turn off the regulator should the junction temperature exceed about 165°C.
LT1084CT#PBF

Linear Technology/Analog Devices

In Stock: 128

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More