IRF640 Power MOSFET: Datasheet, Pinout, and Circuits

Sophie

Published: 28 August 2021 | Last Updated: 28 August 2021

10180

IRF640

IRF640

STMicroelectronics

N-Channel Tube 180m Ω @ 9A, 10V ±20V 1560pF @ 25V 72nC @ 10V TO-220-3

Purchase Guide

N-Channel Tube 180m Ω @ 9A, 10V ±20V 1560pF @ 25V 72nC @ 10V TO-220-3

The IRF640 is an N Channel enhancement mode power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation.

The camera's microphone doens't do any justice at all! This is my 2nd of hopefully many amps I'll build.

Mosfet amplifier using IRF640/9540

IRF640 Description

The IRF640 is an N Channel enhancement mode power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. It is designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high-speed and low gate drive power. The IRF640 can be operated directly from integrated circuits. It can also be used as an amplifier such as audio amplifiers and audio amplifier stages.


IRF640 Pinout

IRF640 Pinout.jpg


IRF640 CAD Model

Symbol

IRF640 Symbol.png


Footprint


IRF640 Footprint.png


3D Model


IRF640 3D Model.jpg


IRF640 Features

  • Transistor Type: N Channel

  • Package Type: TO-220

  • Max Drain to Source Voltage: 200 V

  • Max Gate to Source Voltage: ±20 V

  • Max Continues Drain Current: 18 A

  • Max Pulsed Drain Current: 72 A

  • Max Power Dissipation: 125 W

  • Storage & Operating temperature: -65 to +150 Centigrade


IRF640 Advantages

  • Extremely high dv/dt capability

  • Very low intrinsic capacitances

  • Gate charge minimized

  • Repetitive avalanche rated

  • Fast switching

  • Ease of paralleling

  • Simple drive requirements


Specifications

STMicroelectronics IRF640 technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics IRF640.
  • Type
    Parameter
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-220-3
  • Number of Pins
    3
  • Transistor Element Material

    The "Transistor Element Material" parameter in electronic components refers to the material used to construct the transistor within the component. Transistors are semiconductor devices that amplify or switch electronic signals and are a fundamental building block in electronic circuits. The material used for the transistor element can significantly impact the performance and characteristics of the component. Common materials used for transistor elements include silicon, germanium, and gallium arsenide, each with its own unique properties and suitability for different applications. The choice of transistor element material is crucial in designing electronic components to meet specific performance requirements such as speed, power efficiency, and temperature tolerance.

    SILICON
  • Number of Elements
    1
  • Power Dissipation (Max)
    125W Tc
  • Drive Voltage (Max Rds On, Min Rds On)
    10V
  • Current - Continuous Drain (Id) @ 25℃
    18A Tc
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    150°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    MESH OVERLAY™
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    3
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    200V
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    not_compliant
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    18A
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    IRF6
  • Pin Count

    a count of all of the component leads (or pins)

    3
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Single
  • Operating Mode

    A phase of operation during the operation and maintenance stages of the life cycle of a facility.

    ENHANCEMENT MODE
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    125W
  • FET Type

    "FET Type" refers to the type of Field-Effect Transistor (FET) being used in an electronic component. FETs are three-terminal semiconductor devices that can be classified into different types based on their construction and operation. The main types of FETs include Metal-Oxide-Semiconductor FETs (MOSFETs), Junction FETs (JFETs), and Insulated-Gate Bipolar Transistors (IGBTs).Each type of FET has its own unique characteristics and applications. MOSFETs are commonly used in digital circuits due to their high input impedance and low power consumption. JFETs are often used in low-noise amplifiers and switching circuits. IGBTs combine the high input impedance of MOSFETs with the high current-carrying capability of bipolar transistors, making them suitable for high-power applications like motor control and power inverters.When selecting an electronic component, understanding the FET type is crucial as it determines the device's performance and suitability for a specific application. It is important to consider factors such as voltage ratings, current handling capabilities, switching speeds, and power dissipation when choosing the right FET type for a particular circuit design.

    N-Channel
  • Transistor Application

    In the context of electronic components, the parameter "Transistor Application" refers to the specific purpose or function for which a transistor is designed and used. Transistors are semiconductor devices that can amplify or switch electronic signals and are commonly used in various electronic circuits. The application of a transistor can vary widely depending on its design and characteristics, such as whether it is intended for audio amplification, digital logic, power control, or radio frequency applications. Understanding the transistor application is important for selecting the right type of transistor for a particular circuit or system to ensure optimal performance and functionality.

    SWITCHING
  • Rds On (Max) @ Id, Vgs

    Rds On (Max) @ Id, Vgs refers to the maximum on-resistance of a MOSFET or similar transistor when it is fully turned on or in the saturation region. It is specified at a given drain current (Id) and gate-source voltage (Vgs). This parameter indicates how much resistance the component will offer when conducting, impacting power loss and efficiency in a circuit. Lower Rds On values are preferred for better performance in switching applications.

    180m Ω @ 9A, 10V
  • Vgs(th) (Max) @ Id

    The parameter "Vgs(th) (Max) @ Id" in electronic components refers to the maximum gate-source threshold voltage at a specified drain current (Id). This parameter is commonly found in field-effect transistors (FETs) and is used to define the minimum voltage required at the gate terminal to turn on the transistor and allow current to flow from the drain to the source. The maximum value indicates the upper limit of this threshold voltage under specified operating conditions. It is an important parameter for determining the proper biasing and operating conditions of the FET in a circuit to ensure proper functionality and performance.

    4V @ 250μA
  • Input Capacitance (Ciss) (Max) @ Vds

    The parameter "Input Capacitance (Ciss) (Max) @ Vds" in electronic components refers to the maximum input capacitance measured at a specific drain-source voltage (Vds). Input capacitance is a crucial parameter in field-effect transistors (FETs) and power MOSFETs, as it represents the total capacitance at the input terminal of the device. This capacitance affects the device's switching speed and overall performance, as it influences the time required for charging and discharging during operation. Manufacturers provide this parameter to help designers understand the device's input characteristics and make informed decisions when integrating it into a circuit.

    1560pF @ 25V
  • Gate Charge (Qg) (Max) @ Vgs

    Gate Charge (Qg) (Max) @ Vgs refers to the maximum amount of charge that must be supplied to the gate of a MOSFET or similar device to fully turn it on, measured at a specific gate-source voltage (Vgs). This parameter is crucial for understanding the switching characteristics of the device, as it influences the speed at which the gate can charge and discharge. A higher gate charge value often implies slower switching speeds, which can impact the efficiency of high-frequency applications. This parameter is typically specified in nanocoulombs (nC) in the component's datasheet.

    72nC @ 10V
  • Rise Time

    In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value.

    27ns
  • Vgs (Max)

    Vgs (Max) refers to the maximum gate-source voltage that can be applied to a field-effect transistor (FET) without causing damage to the component. This parameter is crucial in determining the safe operating limits of the FET and helps prevent overvoltage conditions that could lead to device failure. Exceeding the specified Vgs (Max) rating can result in breakdown of the gate oxide layer, leading to permanent damage to the FET. Designers must ensure that the applied gate-source voltage does not exceed the maximum rating to ensure reliable and long-term operation of the electronic component.

    ±20V
  • Fall Time (Typ)

    Fall Time (Typ) is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in an electronic component, such as a transistor or an integrated circuit. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the performance of the component in digital circuits. A shorter fall time indicates faster switching speeds and can result in improved overall circuit performance, such as reduced power consumption and increased data transmission rates. Designers often consider the fall time specification when selecting components for their circuits to ensure proper functionality and efficiency.

    25 ns
  • Continuous Drain Current (ID)

    Continuous Drain Current (ID) is a key parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the maximum current that can flow continuously through the drain terminal of the FET without causing damage to the component. This parameter is crucial for determining the power handling capability of the FET and is specified by the manufacturer in the component's datasheet. Designers must ensure that the actual operating current does not exceed the specified Continuous Drain Current to prevent overheating and potential failure of the component.

    18A
  • JEDEC-95 Code

    JEDEC-95 Code is a standardized identification system used by the Joint Electron Device Engineering Council to categorize and describe semiconductor devices. This code provides a unique alphanumeric identifier for various memory components, ensuring consistency in documentation and communication across the electronics industry. The format includes information about the type, capacity, and technology of the device, facilitating easier specification and understanding for manufacturers and engineers.

    TO-220AB
  • Gate to Source Voltage (Vgs)

    The Gate to Source Voltage (Vgs) is a crucial parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the voltage difference between the gate and source terminals of the FET. This voltage determines the conductivity of the FET and controls the flow of current through the device. By varying the Vgs, the FET can be switched on or off, allowing for precise control of electronic circuits. Understanding and properly managing the Vgs is essential for ensuring the reliable and efficient operation of FET-based circuits.

    20V
  • Drain to Source Breakdown Voltage

    Drain to Source Breakdown Voltage, often denoted as V(BR) D-S, is a critical parameter in electronic components, particularly in field-effect transistors (FETs) and metal-oxide-semiconductor FETs (MOSFETs). It represents the maximum voltage that can be applied between the drain and source terminals of the device without causing breakdown or permanent damage. Exceeding this voltage can lead to excessive current flow, resulting in thermal failure or destruction of the component. It is essential for ensuring reliable operation in circuit designs where high voltages may be encountered.

    200V
  • Pulsed Drain Current-Max (IDM)

    The parameter "Pulsed Drain Current-Max (IDM)" in electronic components refers to the maximum current that the device can handle when operated under pulsed conditions. This specification is important for understanding the device's capability to handle short bursts of high current without causing damage. It is typically measured in amperes and is specified for a specific pulse width and duty cycle. Designers use this parameter to ensure that the component can withstand transient current spikes without failing, making it crucial for applications where pulsed operation is common, such as in power electronics and RF circuits.

    72A
  • Avalanche Energy Rating (Eas)

    Avalanche Energy Rating (Eas) is a parameter that quantifies the energy handling capability of a semiconductor device, particularly during avalanche breakdown conditions. It indicates the maximum energy that the device can withstand without being damaged when it experiences an avalanche effect. This rating is crucial for applications where devices might be exposed to over-voltage or other conditions that could cause unintended breakdown, ensuring reliability and longevity in operation. The Eas value helps designers select appropriate components for circuits that may encounter transient events.

    280 mJ
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Contains Lead
0 Similar Products Remaining

IRF640 Test Circuits

IRF640 Unclamped Inductive Load Test Circuit.png

IRF640 Unclamped Inductive Load Test Circuit

 

 IRF640 Switching Times Test Circuits For Resistive Load.png

IRF640 Switching Times Test Circuits For Resistive Load

 

 IRF640 Gate Charge Test Circuit.png

IRF640 Gate Charge Test Circuit

 

 IRF640 Test Circuit For Inductive Load Switching And Diode Recovery Times.png

IRF640 Test Circuit For Inductive Load Switching And Diode Recovery Times


IRF640 Alternatives

IRF640 Alternatives.png


IRF640 Equivalents

YTA640, IRF641, IRF642, IRFB4620, IRFB5620, 2SK740, STP19NB20, YTA640, BUK455-200A, BUK456-200A, BUK456-200B, BUZ30A, MTP20N20E, RFP15N15, 2SK891, 18N25, 18N40, 22N20

Please check the pin configuration and parameters before replacing them in your circuit.


Where to use IRF640

The IRF640 can be used in general-purpose switching and amplification applications. It can be used in circuits where high-speed switching is required, for example, battery backup systems, uninterruptable power supplies, etc. The IRF640 can be operated directly from integrated circuits and can also be used as an amplifier such as audio amplifiers and audio amplifier stages.


IRF640 Applications

  • Uninterruptible power supply (UPS)

  • DC to DC converters

  • Motor control circuits

  • Battery chargers and BMS

  • Solar power supply applications

  • TV and computer monitor power supplies

  • Fast switching applications


IRF640 Package

IRF640 Package.png

IRF640 Package Outline

 

 IRF640 Mechanical Data.png

IRF640 Mechanical Data


IRF640 Manufacturer

STMicroelectronics is a global independent semiconductor company and is a leader in developing and delivering semiconductor solutions across the spectrum of microelectronics applications. An unrivaled combination of silicon and system expertise, manufacturing strength, Intellectual Property (IP) portfolio, and strategic partners positions the Company at the forefront of System-on-Chip (SoC) technology, and its products play a key role in enabling today's convergence trends.


Trend Analysis

Datasheet PDF

Download datasheets and manufacturer documentation for STMicroelectronics IRF640.
Frequently Asked Questions

1.What is IRF640?

The IRF640 is an N Channel MOSFET designed for high-speed switching purposes. This high-speed switching capability can be very useful in applications where switching speed is crucial, for example in a UPS circuit or in any other application where the user wants to change the load input power from one source to another.

2.How to safely long run IRF640 in a circuit?

For long-term performance, we always suggest using all components at least 20% below their maximum ratings and the same goes with IRF640. The max drain current is 18A therefore do not drive a load of more than 14.4A. The maximum load voltage is 200V and to stay under the safe side do not drive a load of more than 160V. The maximum pulsed drain current is 72A so the max pulsed load should not exceed 57.6A. Use a proper heat sink with the transistor and always store or operate the device at temperatures above -55 degrees centigrade and below +150 degrees centigrade.

3.How does AP Channel connect to MOSFET?

To turn on a P-Channel Enhancement-type MOSFET, apply a positive voltage VS to the source of the MOSFET and apply a negative voltage to the gate terminal of the MOSFET (the gate must be sufficiently more negative than the threshold voltage across the drain-source region (VG DS).

4.Can MOSFET switch AC?

A MOSFET can only be used to control DC loads since it is a unidirectional switch - current flow can be controlled when it is flowing from drain to source, but can not be controlled from source to drain. So, certainly, it can not be used to control AC loads.

5.Can a MOSFET conduct in both directions?

MOSFETs will conduct equally in both directions when they are turned "on." An interesting consequence of the body-source connection is that, even if you turn the transistor "off," it will still conduct in the reverse direction.
IRF640

STMicroelectronics

In Stock: 4600

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More