BF494 Transistor: Circuits, Pinout, and Datasheet

Sophie

Published: 30 December 2021 | Last Updated: 30 December 2021

10742

BF494

BF494

ON Semiconductor

TRANSISTOR RF NPN 20V TO-92

Purchase Guide

TRANSISTOR RF NPN 20V TO-92

BF494 is an NPN medium frequency transistor in a TO-92; SOT54 plastic package. This article mainly introduces circuits, pinout, datasheet and other detailed information about ON Semiconductor BF494.

This video will show you the powerful small FM transmitter with BF494 transistor.

Powerful FM oscilator with BF494

BF494 Description

BF494 is an  NPN  medium frequency transistor in a TO-92; SOT54 plastic package. A semiconductor device is used to amplify or switch electronic signals and electrical power. It's made of semiconductor material and has at least three terminals for connecting to a circuit outside of it. The current through another pair of terminals is controlled by a voltage or current applied to one pair of transistor terminals. A transistor can magnify a signal because the regulated (output) power can be higher than the controlling (input) power. Some transistors are still packaged separately nowadays, but many more are included in integrated circuits.


BF494 Pinout

pinout.jpg

Pinout

Pin NumberDescription
1collector
2emitter
3base


BF494 CAD Model

symbol.png

Symbol

footprint.png

Footprint

3d model.jpg

3D Model

BF494 Features

• Low current (max. 30 mA)

• Low voltage (max. 20 V).

• Advanced process technology

• Low error voltage

• Fast switching speed

• Full-voltage operation

• High power and current handling capability


Specifications

ON Semiconductor BF494 technical specifications, attributes, parameters and parts with similar specifications to ON Semiconductor BF494.
  • Type
    Parameter
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    TO-226-3, TO-92-3 (TO-226AA)
  • Number of Pins
    3
  • Collector-Emitter Breakdown Voltage
    20V
  • Number of Elements
    1
  • hFEMin
    65
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    150°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    20V
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    350mW
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    unknown
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    30mA
  • Element Configuration

    The distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals.

    Single
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    350mW
  • Transistor Type

    Transistor type refers to the classification of transistors based on their operation and construction. The two primary types are bipolar junction transistors (BJTs) and field-effect transistors (FETs). BJTs use current to control the flow of current, while FETs utilize voltage to control current flow. Each type has its own subtypes, such as NPN and PNP for BJTs, and MOSFETs and JFETs for FETs, impacting their applications and characteristics in electronic circuits.

    NPN
  • Collector Emitter Voltage (VCEO)

    Collector-Emitter Voltage (VCEO) is a key parameter in electronic components, particularly in transistors. It refers to the maximum voltage that can be applied between the collector and emitter terminals of a transistor while the base terminal is open or not conducting. Exceeding this voltage limit can lead to breakdown and potential damage to the transistor. VCEO is crucial for ensuring the safe and reliable operation of the transistor within its specified limits. Designers must carefully consider VCEO when selecting transistors for a circuit to prevent overvoltage conditions that could compromise the performance and longevity of the component.

    20V
  • Max Collector Current

    Max Collector Current is a parameter used to specify the maximum amount of current that can safely flow through the collector terminal of a transistor or other electronic component without causing damage. It is typically expressed in units of amperes (A) and is an important consideration when designing circuits to ensure that the component operates within its safe operating limits. Exceeding the specified max collector current can lead to overheating, degradation of performance, or even permanent damage to the component. Designers must carefully consider this parameter when selecting components and designing circuits to ensure reliable and safe operation.

    30mA
  • DC Current Gain (hFE) (Min) @ Ic, Vce

    The parameter "DC Current Gain (hFE) (Min) @ Ic, Vce" in electronic components refers to the minimum value of the DC current gain, denoted as hFE, under specific operating conditions of collector current (Ic) and collector-emitter voltage (Vce). The DC current gain hFE represents the ratio of the collector current to the base current in a bipolar junction transistor (BJT), indicating the amplification capability of the transistor. The minimum hFE value at a given Ic and Vce helps determine the transistor's performance and efficiency in amplifying signals within a circuit. Designers use this parameter to ensure proper transistor selection and performance in various electronic applications.

    67 @ 1mA 10V
  • Collector Base Voltage (VCBO)

    Collector Base Voltage (VCBO) is the maximum allowable voltage that can be applied between the collector and base terminals of a bipolar junction transistor when the emitter is open. It is a critical parameter that determines the voltage rating of the transistor and helps prevent breakdown in the collector-base junction. Exceeding this voltage can lead to permanent damage or failure of the component.

    30V
  • Emitter Base Voltage (VEBO)

    Emitter Base Voltage (VEBO) is a parameter used in electronic components, particularly in transistors. It refers to the maximum voltage that can be applied between the emitter and base terminals of a transistor without causing damage to the device. Exceeding this voltage limit can lead to breakdown of the transistor and potential failure. VEBO is an important specification to consider when designing circuits to ensure the proper operation and reliability of the components. It is typically provided in the datasheet of the transistor and should be carefully observed to prevent any potential damage during operation.

    5V
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

Parts with Similar Specs

The three parts on the right have similar specifications to ON Semiconductor & BF494.

BF494 Circuit Diagram

circuit diagram.png

Circuit Diagram

The circuit diagram for the simplest transistor-based FM transmitter is shown below. Because this is a basic design, great performance or range cannot be guaranteed. For FM modulation, a general-purpose radio frequency transistor  (BF 494 (Q1) is employed. The sound is captured with a condenser microphone. The sound is converted to electrical changes via the condenser mic, and these differences are supplied to Q1  's base, which performs amplification and modulation. The frequency of transmission is determined by the capacitor C2  and the resistor L1. A 9V transistor radio battery can be used to power the circuit.

• Wind 8 turns of 1mm thick enamel coated copper wire on a ball pen refill to make coil L1. To connect the antenna, the coil should be tapped in the middle.

• An antenna can be made out of a 30 centimeter wire.

• Keep in mind! This circuit is a very basic one. There is no assurance of good performance or range. Only suitable for demo applications. I only got an 8-meter range with good sound quality.

• Battery is strictly recommended because mains powered supply may induce additional noise.



BF494 Alternatives

Part NumberDescriptionManufacturer
BF494-AMMOTRANSISTORSTRANSISTOR 30 mA, 20 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, BIP General Purpose Small SignalNXP Semiconductors
BF494-T/RTRANSISTORSTRANSISTOR 30 mA, 20 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, BIP General Purpose Small SignalNXP Semiconductors
BF494TRANSISTORSTRANSISTOR NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, BIP General Purpose Small SignalNational Semiconductor Corporation


BF494 Applications

• HF Applications in Radio and Television Receivers

• FM Tuners

Low Noise AM Mixer-oscillators

• IF Amplifiers in AM/FM Receivers


BF494 Package

package.png

Package

BF494 Manufacturer

ON Semiconductor (Nasdaq: ON) is a disruptive technology firm that is helping to build a brighter future. It was founded in 1999. With an emphasis on automotive and industrial end-markets, the firm is speeding change in megatrends like as vehicle electrification and safety, sustainable energy grids, industrial automation, and 5G and cloud infrastructure. Through a highly specialized and unique product range, Onsemi provides intelligent power and sensor solutions that address the world's most pressing concerns and pave the path for a safer, cleaner, and smarter world.

For automotive, communications, computer, consumer, industrial, LED lighting, medical, military/aerospace, and power applications, products include power and signal management, logic, discrete, and bespoke devices. In North America, Europe, and Asia Pacific, ON Semiconductor has a network of production plants, sales offices, and design centers. In 2016, ON Semiconductor, based in Phoenix, Arizona, generated $3.907 billion in revenue, placing it among the top 20 semiconductor sales leaders in the world.


Trend Analysis

Datasheet PDF

Download datasheets and manufacturer documentation for ON Semiconductor BF494.
BF494

ON Semiconductor

In Stock: 15000

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

Related Parts More